These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 25280984)

  • 41. A biophysical model of synaptic plasticity and metaplasticity can account for the dynamics of the backward shift of hippocampal place fields.
    Yu X; Shouval HZ; Knierim JJ
    J Neurophysiol; 2008 Aug; 100(2):983-92. PubMed ID: 18509078
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Connectivity reflects coding: a model of voltage-based STDP with homeostasis.
    Clopath C; Büsing L; Vasilaki E; Gerstner W
    Nat Neurosci; 2010 Mar; 13(3):344-52. PubMed ID: 20098420
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A single spiking neuron that can represent interval timing: analysis, plasticity and multi-stability.
    Shouval HZ; Gavornik JP
    J Comput Neurosci; 2011 Apr; 30(2):489-99. PubMed ID: 20827572
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Two-trace model for spike-timing-dependent synaptic plasticity.
    Echeveste R; Gros C
    Neural Comput; 2015 Mar; 27(3):672-98. PubMed ID: 25602766
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spike-timing dynamics of neuronal groups.
    Izhikevich EM; Gally JA; Edelman GM
    Cereb Cortex; 2004 Aug; 14(8):933-44. PubMed ID: 15142958
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Burst-time-dependent plasticity robustly guides ON/OFF segregation in the lateral geniculate nucleus.
    Gjorgjieva J; Toyoizumi T; Eglen SJ
    PLoS Comput Biol; 2009 Dec; 5(12):e1000618. PubMed ID: 20041207
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nonlinear dynamic model of CA1 short-term plasticity using random impulse train stimulation.
    Gholmieh G; Courellis S; Marmarelis V; Berger T
    Ann Biomed Eng; 2007 May; 35(5):847-57. PubMed ID: 17380396
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multi-Input, Multi-Output Neuronal Mode Network Approach to Modeling the Encoding Dynamics and Functional Connectivity of Neural Systems.
    Geng K; Shin DC; Song D; Hampson RE; Deadwyler SA; Berger TW; Marmarelis VZ
    Neural Comput; 2019 Jul; 31(7):1327-1355. PubMed ID: 31113305
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of random external background stimulation on network synaptic stability after tetanization: a modeling study.
    Chao ZC; Bakkum DJ; Wagenaar DA; Potter SM
    Neuroinformatics; 2005; 3(3):263-80. PubMed ID: 16077162
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Scalable Weight-Free Learning Algorithm for Regulatory Control of Cell Activity in Spiking Neuronal Networks.
    Zhang X; Foderaro G; Henriquez C; Ferrari S
    Int J Neural Syst; 2018 Mar; 28(2):1750015. PubMed ID: 28270025
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comment on "Adaptive Q-S (lag, anticipated, and complete) time-varying synchronization and parameters identification of uncertain delayed neural networks" [Chaos 16, 023119 (2006)].
    Li L; Yang Y; Peng H
    Chaos; 2007 Sep; 17(3):038101; discussion 038102. PubMed ID: 17903027
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multicontact Co-operativity in Spike-Timing-Dependent Structural Plasticity Stabilizes Networks.
    Deger M; Seeholzer A; Gerstner W
    Cereb Cortex; 2018 Apr; 28(4):1396-1415. PubMed ID: 29300903
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Unsupervised learning of visual features through spike timing dependent plasticity.
    Masquelier T; Thorpe SJ
    PLoS Comput Biol; 2007 Feb; 3(2):e31. PubMed ID: 17305422
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Event-driven simulation scheme for spiking neural networks using lookup tables to characterize neuronal dynamics.
    Ros E; Carrillo R; Ortigosa EM; Barbour B; Agís R
    Neural Comput; 2006 Dec; 18(12):2959-93. PubMed ID: 17052155
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks V: self-organization schemes and weight dependence.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2010 Nov; 103(5):365-86. PubMed ID: 20882297
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stability and Competition in Multi-spike Models of Spike-Timing Dependent Plasticity.
    Babadi B; Abbott LF
    PLoS Comput Biol; 2016 Mar; 12(3):e1004750. PubMed ID: 26939080
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A forecast-based STDP rule suitable for neuromorphic implementation.
    Davies S; Galluppi F; Rast AD; Furber SB
    Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spike timing dependent plasticity promotes synchrony of inhibitory networks in the presence of heterogeneity.
    Talathi SS; Hwang DU; Ditto WL
    J Comput Neurosci; 2008 Oct; 25(2):262-81. PubMed ID: 18297384
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. I. Input selectivity--strengthening correlated input pathways.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):81-102. PubMed ID: 19536560
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cooperation of spike timing-dependent and heterosynaptic plasticities in neural networks: a Fokker-Planck approach.
    Zhu L; Lai YC; Hoppensteadt FC; He J
    Chaos; 2006 Jun; 16(2):023105. PubMed ID: 16822008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.