BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 25281060)

  • 1. Comment on "A spectroscopic comparison of selected Chinese kaolinite, coal bearing kaolinite and halloysite--a mid-infrared and near-infrared study" and "Infrared and infrared emission spectroscopic study of typical Chinese kaolinite and halloysite" by Hongfei Cheng et al. (2010).
    Kloprogge JT
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():175-7. PubMed ID: 25281060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A spectroscopic comparison of selected Chinese kaolinite, coal bearing kaolinite and halloysite--a mid-infrared and near-infrared study.
    Cheng H; Yang J; Liu Q; Zhang J; Frost RL
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Nov; 77(4):856-61. PubMed ID: 20807679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrared and infrared emission spectroscopic study of typical Chinese kaolinite and halloysite.
    Cheng H; Frost RL; Yang J; Liu Q; He J
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Dec; 77(5):1014-20. PubMed ID: 20864389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A spectroscopic investigation of the weathering of a heritage Sydney sandstone.
    Ip KH; Stuart BH; Ray AS; Thomas PS
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(3):1032-5. PubMed ID: 18406662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of kaolinite surfaces through mechanochemical treatment--a mid-IR and near-IR spectroscopic study.
    Frost RL; Makó E; Kristóf J; Kloprogge JT
    Spectrochim Acta A Mol Biomol Spectrosc; 2002 Nov; 58(13):2849-59. PubMed ID: 12477029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New organophilic kaolin clays based on single-point grafted 3-aminopropyl dimethylethoxysilane.
    Zaharia A; Perrin FX; Teodorescu M; Radu AL; Iordache TV; Florea AM; Donescu D; Sarbu A
    Phys Chem Chem Phys; 2015 Oct; 17(38):24908-16. PubMed ID: 26343253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The determination of kaolinite clay content in limestones of western Tamil Nadu by methylene blue adsorption using UV-vis spectroscopy.
    Ramasamy V; Anandalakshmi K
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jun; 70(1):25-9. PubMed ID: 17884718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The molecular structure of chloritoid: a mid-infrared and near-infrared spectroscopic study.
    Li K; Liu Q; Cheng H; Deng Y; Frost RL
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jun; 145():604-609. PubMed ID: 25828887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of Surface Charge Properties during Kaolinite to Halloysite-7Å Transformation.
    Tarì G; Bobos I; Gomes CSF; Ferreira JMF
    J Colloid Interface Sci; 1999 Feb; 210(2):360-366. PubMed ID: 9929423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Halloysite nanotubule clay for efficient water purification.
    Zhao Y; Abdullayev E; Vasiliev A; Lvov Y
    J Colloid Interface Sci; 2013 Sep; 406():121-9. PubMed ID: 23806416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface speciation of Cd(II) and Pb(II) on kaolinite by XAFS spectroscopy.
    Gräfe M; Singh B; Balasubramanian M
    J Colloid Interface Sci; 2007 Nov; 315(1):21-32. PubMed ID: 17714722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A systematic investigation into the extraction of aluminum from coal spoil through kaolinite.
    Qiao XC; Si P; Yu JG
    Environ Sci Technol; 2008 Nov; 42(22):8541-6. PubMed ID: 19068845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface complexation of antimony on kaolinite.
    Rakshit S; Sarkar D; Datta R
    Chemosphere; 2015 Jan; 119():349-354. PubMed ID: 25046527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of clay particles on the transport and retention of titanium dioxide nanoparticles in quartz sand.
    Cai L; Tong M; Wang X; Kim H
    Environ Sci Technol; 2014 Jul; 48(13):7323-32. PubMed ID: 24911544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption and release of ofloxacin from acid- and heat-treated halloysite.
    Wang Q; Zhang J; Zheng Y; Wang A
    Colloids Surf B Biointerfaces; 2014 Jan; 113():51-8. PubMed ID: 24060930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel silica alumina-based backfill material composed of coal refuse and fly ash.
    Yao Y; Sun H
    J Hazard Mater; 2012 Apr; 213-214():71-82. PubMed ID: 22336582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Desorption of ciprofloxacin from clay mineral surfaces.
    Wu Q; Li Z; Hong H; Li R; Jiang WT
    Water Res; 2013 Jan; 47(1):259-68. PubMed ID: 23123088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 31P solid-state nuclear magnetic resonance study of the sorption of phosphate onto gibbsite and kaolinite.
    Van Emmerik TJ; Sandström DE; Antzutkin ON; Angove MJ; Johnson BB
    Langmuir; 2007 Mar; 23(6):3205-13. PubMed ID: 17266338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoplastics interaction with feldspar and weathering originated secondary minerals (kaolinite and gibbsite) in the riverine environment.
    Choudhary A; Khandelwal N; Singh N; Tiwari E; Ganie ZA; Darbha GK
    Sci Total Environ; 2022 Apr; 818():151831. PubMed ID: 34813809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preferential adsorption of extracellular polymeric substances from bacteria on clay minerals and iron oxide.
    Cao Y; Wei X; Cai P; Huang Q; Rong X; Liang W
    Colloids Surf B Biointerfaces; 2011 Mar; 83(1):122-7. PubMed ID: 21130614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.