These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 25281117)

  • 1. Metals in boat paint fragments from slipways, repair facilities and abandoned vessels: an evaluation using field portable XRF.
    Turner A; Comber S; Rees AB; Gkiokas D; Solman K
    Talanta; 2015 Jan; 131():372-8. PubMed ID: 25281117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal contamination of sediment by paint peeling from abandoned boats, with particular reference to lead.
    Rees AB; Turner A; Comber S
    Sci Total Environ; 2014 Oct; 494-495():313-9. PubMed ID: 25062307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. XRF measurements of tin, copper and zinc in antifouling paints coated on leisure boats.
    Ytreberg E; Bighiu MA; Lundgren L; Eklund B
    Environ Pollut; 2016 Jun; 213():594-599. PubMed ID: 27016611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Marine pollution from antifouling paint particles.
    Turner A
    Mar Pollut Bull; 2010 Feb; 60(2):159-71. PubMed ID: 20060546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal contamination at recreational boatyards linked to the use of antifouling paints-investigation of soil and sediment with a field portable XRF.
    Lagerström M; Norling M; Eklund B
    Environ Sci Pollut Res Int; 2016 May; 23(10):10146-57. PubMed ID: 26873824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Persistence of TBT and copper in excess on leisure boat hulls around the Baltic Sea.
    Eklund B; Watermann B
    Environ Sci Pollut Res Int; 2018 May; 25(15):14595-14605. PubMed ID: 29532372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of commercial and recreational vessels coated with banned organotin paint through screening of tin by portable XRF.
    Lagerström M; Yngsell D; Eklund B; Ytreberg E
    J Hazard Mater; 2019 Jan; 362():107-114. PubMed ID: 30236930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal contamination of intertidal sediment and macroalgae in an area impacted by paint from abandoned boats.
    Turner A
    Mar Pollut Bull; 2022 Sep; 182():113958. PubMed ID: 35932725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel XRF method to measure environmental release of copper and zinc from antifouling paints.
    Ytreberg E; Lagerström M; Holmqvist A; Eklund B; Elwing H; Dahlström M; Dahl P; Dahlström M
    Environ Pollut; 2017 Jun; 225():490-496. PubMed ID: 28341326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antifouling biocides in discarded marine paint particles.
    Parks R; Donnier-Marechal M; Frickers PE; Turner A; Readman JW
    Mar Pollut Bull; 2010 Aug; 60(8):1226-30. PubMed ID: 20381093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal concentrations and distribution in paint waste generated during bridge rehabilitation in New York State.
    Shu Z; Axe L; Jahan K; Ramanujachary KV; Kochersberger C
    Sci Total Environ; 2015 Sep; 526():262-70. PubMed ID: 25955694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioaccessibility of trace metals in boat paint particles.
    Turner A; Radford A
    Ecotoxicol Environ Saf; 2010 Jul; 73(5):817-24. PubMed ID: 20304494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Persistence and metallic composition of paint particles in sediments from a tidal inlet.
    Takahashi CK; Turner A; Millward GE; Glegg GA
    Mar Pollut Bull; 2012 Jan; 64(1):133-137. PubMed ID: 22078818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New analytical application for metal determination in antifouling paints.
    Ytreberg E; Lundgren L; Bighiu MA; Eklund B
    Talanta; 2015 Oct; 143():121-126. PubMed ID: 26078138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antifouling paint particles in intertidal estuarine sediments from southwest England and their ingestion by the harbour ragworm, Hediste diversicolor.
    Muller-Karanassos C; Turner A; Arundel W; Vance T; Lindeque PK; Cole M
    Environ Pollut; 2019 Jun; 249():163-170. PubMed ID: 30884395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trace metals in antifouling paint particles and their heterogeneous contamination of coastal sediments.
    Singh N; Turner A
    Mar Pollut Bull; 2009 Apr; 58(4):559-64. PubMed ID: 19100584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inspection method for the identification of TBT-containing antifouling paints.
    Senda T; Miyata O; Kihara T; Yamada Y
    Biofouling; 2003 Apr; 19 Suppl():231-7. PubMed ID: 14618725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid and nondestructive measurement of labile Mn, Cu, Zn, Pb and As in DGT by using field portable-XRF.
    Chen Z; Williams PN; Zhang H
    Environ Sci Process Impacts; 2013 Sep; 15(9):1768-74. PubMed ID: 23912422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sediments indicate the continued use of banned antifouling compounds.
    Egardt J; Nilsson P; Dahllöf I
    Mar Pollut Bull; 2017 Dec; 125(1-2):282-288. PubMed ID: 28847633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance evaluation of currently used portable X ray fluorescence instruments for measuring the lead content of paint in field samples.
    Muller Y; Favreau P; Kohler M
    J Occup Environ Hyg; 2014; 11(8):528-37. PubMed ID: 24964951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.