These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 25281330)

  • 21. Mg deficiency affects leaf Mg remobilization and the proteome in Brassica napus.
    Billard V; Maillard A; Coquet L; Jouenne T; Cruz F; Garcia-Mina JM; Yvin JC; Ourry A; Etienne P
    Plant Physiol Biochem; 2016 Oct; 107():337-343. PubMed ID: 27362297
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Remobilization of leaf S compounds and senescence in response to restricted sulphate supply during the vegetative stage of oilseed rape are affected by mineral N availability.
    Dubousset L; Abdallah M; Desfeux AS; Etienne P; Meuriot F; Hawkesford MJ; Gombert J; Ségura R; Bataillé MP; Rezé S; Bonnefoy J; Ameline AF; Ourry A; Le Dily F; Avice JC
    J Exp Bot; 2009; 60(11):3239-53. PubMed ID: 19553370
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Genotypic Comparison Reveals That the Improvement in Nitrogen Remobilization Efficiency in Oilseed Rape Leaves Is Related to Specific Patterns of Senescence-Associated Protease Activities and Phytohormones.
    Poret M; Chandrasekar B; van der Hoorn RAL; Déchaumet S; Bouchereau A; Kim TH; Lee BR; Macquart F; Hara-Nishimura I; Avice JC
    Front Plant Sci; 2019; 10():46. PubMed ID: 30778361
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sixteen cytosolic glutamine synthetase genes identified in the Brassica napus L. genome are differentially regulated depending on nitrogen regimes and leaf senescence.
    Orsel M; Moison M; Clouet V; Thomas J; Leprince F; Canoy AS; Just J; Chalhoub B; Masclaux-Daubresse C
    J Exp Bot; 2014 Jul; 65(14):3927-47. PubMed ID: 24567494
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A proteomic profiling approach to reveal a novel role of Brassica napus drought 22 kD/water-soluble chlorophyll-binding protein in young leaves during nitrogen remobilization induced by stressful conditions.
    Desclos M; Dubousset L; Etienne P; Le Caherec F; Satoh H; Bonnefoy J; Ourry A; Avice JC
    Plant Physiol; 2008 Aug; 147(4):1830-44. PubMed ID: 18552235
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of mineral sulphur availability on nitrogen and sulphur uptake and remobilization during the vegetative growth of Brassica napus L.
    Abdallah M; Dubousset L; Meuriot F; Etienne P; Avice JC; Ourry A
    J Exp Bot; 2010 Jun; 61(10):2635-46. PubMed ID: 20403880
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Copper-deficiency in Brassica napus induces copper remobilization, molybdenum accumulation and modification of the expression of chloroplastic proteins.
    Billard V; Ourry A; Maillard A; Garnica M; Coquet L; Jouenne T; Cruz F; Garcia-Mina JM; Yvin JC; Etienne P
    PLoS One; 2014; 9(10):e109889. PubMed ID: 25333918
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolomics of laminae and midvein during leaf senescence and source-sink metabolite management in Brassica napus L. leaves.
    Clément G; Moison M; Soulay F; Reisdorf-Cren M; Masclaux-Daubresse C
    J Exp Bot; 2018 Feb; 69(4):891-903. PubMed ID: 28992054
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ectopic overexpression of a membrane-tethered transcription factor gene NAC60 from oilseed rape positively modulates programmed cell death and age-triggered leaf senescence.
    Yan J; Chen Q; Cui X; Zhao P; Gao S; Yang B; Liu JX; Tong T; Deyholos MK; Jiang YQ
    Plant J; 2021 Feb; 105(3):600-618. PubMed ID: 33119146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overexpression of
    He S; Ma R; Liu Z; Zhang D; Wang S; Guo Y; Chen M
    J Agric Food Chem; 2022 Mar; 70(11):3420-3434. PubMed ID: 35261232
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Senescence-inducible cell wall and intracellular purple acid phosphatases: implications for phosphorus remobilization in Hakea prostrata (Proteaceae) and Arabidopsis thaliana (Brassicaceae).
    Shane MW; Stigter K; Fedosejevs ET; Plaxton WC
    J Exp Bot; 2014 Nov; 65(20):6097-106. PubMed ID: 25170100
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Membrane-Bound Transcriptional Activator NTL1 from Rapeseed Positively Modulates Leaf Senescence through Targeting Genes Involved in Reactive Oxygen Species Production and Programmed Cell Death.
    Yan J; Li Y; Zhao P; Mu B; Chen Q; Li X; Cui X; Wang Z; Li J; Li S; Yang B; Jiang YQ
    J Agric Food Chem; 2021 May; 69(17):4968-4980. PubMed ID: 33877836
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wheat NAM genes regulate the majority of early monocarpic senescence transcriptional changes including nitrogen remobilization genes.
    Andleeb T; Knight E; Borrill P
    G3 (Bethesda); 2023 Feb; 13(2):. PubMed ID: 36226803
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Rapeseed WRKY Transcription Factor Phosphorylated by CPK Modulates Cell Death and Leaf Senescence by Regulating the Expression of ROS and SA-Synthesis-Related Genes.
    Cui X; Zhao P; Liang W; Cheng Q; Mu B; Niu F; Yan J; Liu C; Xie H; Kav NNV; Deyholos MK; Jiang YQ; Yang B
    J Agric Food Chem; 2020 Jul; 68(28):7348-7359. PubMed ID: 32530625
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular evolution and transcriptional regulation of the oilseed rape proline dehydrogenase genes suggest distinct roles of proline catabolism during development.
    Faës P; Deleu C; Aïnouche A; Le Cahérec F; Montes E; Clouet V; Gouraud AM; Albert B; Orsel M; Lassalle G; Leport L; Bouchereau A; Niogret MF
    Planta; 2015 Feb; 241(2):403-19. PubMed ID: 25326771
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Leaves play a central role in the adaptation of nitrogen and sulfur metabolism to ammonium nutrition in oilseed rape (Brassica napus).
    Coleto I; de la Peña M; Rodríguez-Escalante J; Bejarano I; Glauser G; Aparicio-Tejo PM; González-Moro MB; Marino D
    BMC Plant Biol; 2017 Sep; 17(1):157. PubMed ID: 28931380
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative Transcriptome Analysis in Oilseed Rape (
    Tang W; He X; Qian L; Wang F; Zhang Z; Sun C; Lin L; Guan C
    Genes (Basel); 2019 May; 10(5):. PubMed ID: 31121949
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitrogen Supply Drives Senescence-Related Seed Storage Protein Expression in Rapeseed Leaves.
    Bieker S; Riester L; Doll J; Franzaring J; Fangmeier A; Zentgraf U
    Genes (Basel); 2019 Jan; 10(2):. PubMed ID: 30678241
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial and temporal patterns of green fluorescent protein (GFP) fluorescence during leaf canopy development in transgenic oilseed rape, Brassica napus L.
    Halfhill MD; Millwood RJ; Rufty TW; Weissinger AK; Stewart CN
    Plant Cell Rep; 2003 Dec; 22(5):338-43. PubMed ID: 14648109
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Novel NAC-Type Transcription Factor, NAC87, from Oilseed Rape Modulates Reactive Oxygen Species Accumulation and Cell Death.
    Yan J; Tong T; Li X; Chen Q; Dai M; Niu F; Yang M; Deyholos MK; Yang B; Jiang YQ
    Plant Cell Physiol; 2018 Feb; 59(2):290-303. PubMed ID: 29186531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.