These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 25281597)

  • 1. Flow patterns and preferred sites of atherosclerotic lesions in the human aorta - II. Abdominal aorta.
    Endo S; Goldsmith HL; Karino T
    Biorheology; 2014; 51(4-5):257-74. PubMed ID: 25281597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow patterns and preferred sites of atherosclerotic lesions in the human aorta - I. Aortic arch.
    Endo S; Goldsmith HL; Karino T
    Biorheology; 2014; 51(4-5):239-55. PubMed ID: 25281595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow patterns and distributions of fluid velocity and wall shear stress in the human internal carotid and middle cerebral arteries.
    Takeuchi S; Karino T
    World Neurosurg; 2010 Mar; 73(3):174-85; discussion e27. PubMed ID: 20860955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow patterns in dog aortic arch under a steady flow condition simulating mid-systole.
    Endo S; Sohara Y; Karino T
    Heart Vessels; 1996; 11(4):180-91. PubMed ID: 9119807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microscopic structure of disturbed flows in the arterial and venous systems, and its implication in the localization of vascular diseases.
    Karino T
    Int Angiol; 1986; 5(4):297-313. PubMed ID: 3585099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional velocity measurements in a pulsatile flow model of the normal abdominal aorta simulating different hemodynamic conditions.
    Pedersen EM; Sung HW; Burlson AC; Yoganathan AP
    J Biomech; 1993 Oct; 26(10):1237-47. PubMed ID: 8253828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of exercise on hemodynamic conditions in the abdominal aorta.
    Taylor CA; Hughes TJ; Zarins CK
    J Vasc Surg; 1999 Jun; 29(6):1077-89. PubMed ID: 10359942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational model of blood flow in the aorto-coronary bypass graft.
    Sankaranarayanan M; Chua LP; Ghista DN; Tan YS
    Biomed Eng Online; 2005 Mar; 4():14. PubMed ID: 15745458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow patterns at the major T-junctions of the dog descending aorta.
    Karino T; Motomiya M; Goldsmith HL
    J Biomech; 1990; 23(6):537-48. PubMed ID: 2341417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of arterial blood flow on walls of the abdominal aorta: distributions of wall shear stress and oscillatory shear index determined by phase-contrast magnetic resonance imaging.
    Sughimoto K; Shimamura Y; Tezuka C; Tsubota K; Liu H; Okumura K; Masuda Y; Haneishi H
    Heart Vessels; 2016 Jul; 31(7):1168-75. PubMed ID: 26481791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries.
    Asakura T; Karino T
    Circ Res; 1990 Apr; 66(4):1045-66. PubMed ID: 2317887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microcinematographic studies of flow patterns in the excised rabbit aorta and its major branches.
    Barakat AI; Karino T; Colton CK
    Biorheology; 1997; 34(3):195-221. PubMed ID: 9474263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical study on the effect of secondary flow in the human aorta on local shear stresses in abdominal aortic branches.
    Shipkowitz T; Rodgers VG; Frazin LJ; Chandran KB
    J Biomech; 2000 Jun; 33(6):717-28. PubMed ID: 10807993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of steady and pulsatile flow in a double branching arterial model.
    Lutz RJ; Hsu L; Menawat A; Zrubek J; Edwards K
    J Biomech; 1983; 16(9):753-66. PubMed ID: 6643546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis.
    Taylor CA; Hughes TJ; Zarins CK
    Ann Biomed Eng; 1998; 26(6):975-87. PubMed ID: 9846936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A boundary element analysis on hemodynamic characteristics at the bifurcation of abdominal arterial].
    Peng H; Yang D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Aug; 29(4):697-700. PubMed ID: 23016419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variations in geometry and shear rate distribution in casts of human aortic bifurcations.
    Mark FF; Bargeron CB; Deters OJ; Friedman MH
    J Biomech; 1989; 22(6-7):577-82. PubMed ID: 2530232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow patterns in the abdominal aorta under simulated postprandial and exercise conditions: an experimental study.
    Ku DN; Glagov S; Moore JE; Zarins CK
    J Vasc Surg; 1989 Feb; 9(2):309-16. PubMed ID: 2918626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The flow field along the entire length of mouse aorta and primary branches.
    Huo Y; Guo X; Kassab GS
    Ann Biomed Eng; 2008 May; 36(5):685-99. PubMed ID: 18299987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spiral blood flow in aorta-renal bifurcation models.
    Javadzadegan A; Simmons A; Barber T
    Comput Methods Biomech Biomed Engin; 2016; 19(9):964-76. PubMed ID: 26414530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.