BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 25281917)

  • 21. Oncomirs: from tumor biology to molecularly targeted anticancer strategies.
    Mocellin S; Pasquali S; Pilati P
    Mini Rev Med Chem; 2009 Jan; 9(1):70-80. PubMed ID: 19149661
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanocarrier-based co-delivery of small molecules and siRNA/miRNA for treatment of cancer.
    Chitkara D; Singh S; Mittal A
    Ther Deliv; 2016; 7(4):245-55. PubMed ID: 27010986
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbon nanotubes for delivery of small molecule drugs.
    Wong BS; Yoong SL; Jagusiak A; Panczyk T; Ho HK; Ang WH; Pastorin G
    Adv Drug Deliv Rev; 2013 Dec; 65(15):1964-2015. PubMed ID: 23954402
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Epithelial-mesenchymal transition-associated miRNAs in ovarian carcinoma, with highlight on the miR-200 family: prognostic value and prospective role in ovarian cancer therapeutics.
    Koutsaki M; Spandidos DA; Zaravinos A
    Cancer Lett; 2014 Sep; 351(2):173-81. PubMed ID: 24952258
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MicroRNAs as new therapeutic targets and tools in cancer.
    Gandellini P; Profumo V; Folini M; Zaffaroni N
    Expert Opin Ther Targets; 2011 Mar; 15(3):265-79. PubMed ID: 21208133
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advances in the discovery of microRNA-based anticancer therapeutics: latest tools and developments.
    To KKW; Fong W; Tong CWS; Wu M; Yan W; Cho WCS
    Expert Opin Drug Discov; 2020 Jan; 15(1):63-83. PubMed ID: 31739699
    [No Abstract]   [Full Text] [Related]  

  • 27. MicroRNAs involved in regulating epithelial-mesenchymal transition and cancer stem cells as molecular targets for cancer therapeutics.
    Xia H; Hui KM
    Cancer Gene Ther; 2012 Nov; 19(11):723-30. PubMed ID: 22975591
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New role of microRNA: carcinogenesis and clinical application in cancer.
    Zhao L; Chen X; Cao Y
    Acta Biochim Biophys Sin (Shanghai); 2011 Nov; 43(11):831-9. PubMed ID: 21908856
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The emerging role of microRNAs in resistance to lung cancer treatments.
    MacDonagh L; Gray SG; Finn SP; Cuffe S; O'Byrne KJ; Barr MP
    Cancer Treat Rev; 2015 Feb; 41(2):160-9. PubMed ID: 25592062
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Small molecules targeting microRNA for cancer therapy: Promises and obstacles.
    Wen D; Danquah M; Chaudhary AK; Mahato RI
    J Control Release; 2015 Dec; 219():237-247. PubMed ID: 26256260
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Local co-administration of gene-silencing RNA and drugs in cancer therapy: State-of-the art and therapeutic potential.
    Larsson M; Huang WT; Liu DM; Losic D
    Cancer Treat Rev; 2017 Apr; 55():128-135. PubMed ID: 28363142
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Resistance to targeted therapies: a role for microRNAs?
    Migliore C; Giordano S
    Trends Mol Med; 2013 Oct; 19(10):633-42. PubMed ID: 24012193
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy.
    Cho WC
    Int J Biochem Cell Biol; 2010 Aug; 42(8):1273-81. PubMed ID: 20026422
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Target-responsive DNA/RNA nanomaterials for microRNA sensing and inhibition: the jack-of-all-trades in cancer nanotheranostics?
    Conde J; Edelman ER; Artzi N
    Adv Drug Deliv Rev; 2015 Jan; 81():169-83. PubMed ID: 25220355
    [TBL] [Abstract][Full Text] [Related]  

  • 35. AC1MMYR2, an inhibitor of dicer-mediated biogenesis of Oncomir miR-21, reverses epithelial-mesenchymal transition and suppresses tumor growth and progression.
    Shi Z; Zhang J; Qian X; Han L; Zhang K; Chen L; Liu J; Ren Y; Yang M; Zhang A; Pu P; Kang C
    Cancer Res; 2013 Sep; 73(17):5519-31. PubMed ID: 23811941
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of microRNA in resistance to breast cancer therapy.
    Robertson NM; Yigit MV
    Wiley Interdiscip Rev RNA; 2014; 5(6):823-33. PubMed ID: 25044299
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MicroRNAs as therapeutic targets in chemoresistance.
    Garofalo M; Croce CM
    Drug Resist Updat; 2013; 16(3-5):47-59. PubMed ID: 23757365
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploiting Nanotechnology for the Development of MicroRNA-Based Cancer Therapeutics.
    Tyagi N; Arora S; Deshmukh SK; Singh S; Marimuthu S; Singh AP
    J Biomed Nanotechnol; 2016 Jan; 12(1):28-42. PubMed ID: 27301170
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stimuli-sensitive nanopreparations for combination cancer therapy.
    Jhaveri A; Deshpande P; Torchilin V
    J Control Release; 2014 Sep; 190():352-70. PubMed ID: 24818767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The utility of LNA in microRNA-based cancer diagnostics and therapeutics.
    Stenvang J; Silahtaroglu AN; Lindow M; Elmen J; Kauppinen S
    Semin Cancer Biol; 2008 Apr; 18(2):89-102. PubMed ID: 18295505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.