BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 25281952)

  • 1. Ghost marker detection and elimination in marker-based optical tracking systems for real-time tracking in stereotactic body radiotherapy.
    Yan G; Li J; Huang Y; Mittauer K; Lu B; Liu C
    Med Phys; 2014 Oct; 41(10):101713. PubMed ID: 25281952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elimination of ghost markers during dual sensor-based infrared tracking of multiple individual reflective markers.
    Stroian G; Falco T; Seuntjens JP
    Med Phys; 2004 Jul; 31(7):2008-19. PubMed ID: 15305453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a real-time surface image-guided stereotactic positioning system.
    Peng JL; Kahler D; Li JG; Samant S; Yan G; Amdur R; Liu C
    Med Phys; 2010 Oct; 37(10):5421-33. PubMed ID: 21089778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SU-E-J-69: Development of an Ambiguity-Free Optical Tracking System for SBRT.
    Yan G; Lu B; Mittauer K; Liu C; Li J
    Med Phys; 2012 Jun; 39(6Part7):3668. PubMed ID: 28519813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Accurate Recognition of Infrared Retro-Reflective Markers in Surgical Navigation.
    Wu H; Lin Q; Yang R; Zhou Y; Zheng L; Huang Y; Wang Z; Lao Y; Huang J
    J Med Syst; 2019 Apr; 43(6):153. PubMed ID: 31020459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial and rotational quality assurance of 6DOF patient tracking systems.
    Belcher AH; Liu X; Grelewicz Z; Wiersma RD
    Med Phys; 2016 Jun; 43(6):2785-2793. PubMed ID: 27277026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic marker detection and 3D position reconstruction using cine EPID images for SBRT verification.
    Park SJ; Ionascu D; Hacker F; Mamon H; Berbeco R
    Med Phys; 2009 Oct; 36(10):4536-46. PubMed ID: 19928085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beam's-eye-view imaging during non-coplanar lung SBRT.
    Yip SS; Rottmann J; Berbeco RI
    Med Phys; 2015 Dec; 42(12):6776-83. PubMed ID: 26632035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new markerless patient-to-image registration method using a portable 3D scanner.
    Fan Y; Jiang D; Wang M; Song Z
    Med Phys; 2014 Oct; 41(10):101910. PubMed ID: 25281962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A method for registration of single photon emission computed tomography (SPECT) and computed tomography (CT) images for liver stereotactic radiotherapy (SRT).
    Gayou O; Day E; Mohammadi S; Kirichenko A
    Med Phys; 2012 Dec; 39(12):7398-401. PubMed ID: 23231289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motion monitoring for cranial frameless stereotactic radiosurgery using video-based three-dimensional optical surface imaging.
    Li G; Ballangrud A; Kuo LC; Kang H; Kirov A; Lovelock M; Yamada Y; Mechalakos J; Amols H
    Med Phys; 2011 Jul; 38(7):3981-94. PubMed ID: 21858995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Four-dimensional cone-beam computed tomography and digital tomosynthesis reconstructions using respiratory signals extracted from transcutaneously inserted metal markers for liver SBRT.
    Park JC; Park SH; Kim JH; Yoon SM; Kim SS; Kim JS; Liu Z; Watkins T; Song WY
    Med Phys; 2011 Feb; 38(2):1028-36. PubMed ID: 21452740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of Optical Marker Configuration on Tracking Accuracy in Image Guided Surgery.
    Mekuria K; Kim Y; Cho H; Lee D; Park S; Lee BH; Jang KM; Wang JH
    Stud Health Technol Inform; 2016; 220():227-32. PubMed ID: 27046583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental evaluations of the accuracy of 3D and 4D planning in robotic tracking stereotactic body radiotherapy for lung cancers.
    Chan MK; Kwong DL; Ng SC; Tong AS; Tam EK
    Med Phys; 2013 Apr; 40(4):041712. PubMed ID: 23556882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fiducial marker and marker-less soft-tissue detection using fast MV fluoroscopy on a new generation EPID: investigating the influence of pulsing artifacts and artifact suppression techniques.
    Poels K; Verellen D; Van de Vondel I; El Mazghari R; Depuydt T; De Ridder M
    Med Phys; 2014 Oct; 41(10):101911. PubMed ID: 25281963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust frameless stereotactic localization in extra-cranial radiotherapy.
    Riboldi M; Baroni G; Spadea MF; Bassanini F; Tagaste B; Garibaldi C; Orecchia R; Pedotti A
    Med Phys; 2006 Apr; 33(4):1141-52. PubMed ID: 16696492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SU-E-T-181: Development of a Single-Marker-Based Optical Tracking System to Enhance Patient Safety in Radiotherapy.
    Yan G; Lu B; Mittauer K; Liu C; Li J
    Med Phys; 2012 Jun; 39(6Part12):3744-3745. PubMed ID: 28517810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal marker placement in hadrontherapy: intelligent optimization strategies with augmented Lagrangian pattern search.
    Altomare C; Guglielmann R; Riboldi M; Bellazzi R; Baroni G
    J Biomed Inform; 2015 Feb; 53():65-72. PubMed ID: 25220865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fast, accurate, and automatic 2D-3D image registration for image-guided cranial radiosurgery.
    Fu D; Kuduvalli G
    Med Phys; 2008 May; 35(5):2180-94. PubMed ID: 18561693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-Of-Flight Camera, Optical Tracker and Computed Tomography in Pairwise Data Registration.
    Pycinski B; Czajkowska J; Badura P; Juszczyk J; Pietka E
    PLoS One; 2016; 11(7):e0159493. PubMed ID: 27434396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.