These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 25282035)

  • 1. Methods to study the tumor microenvironment under controlled oxygen conditions.
    Byrne MB; Leslie MT; Gaskins HR; Kenis PJA
    Trends Biotechnol; 2014 Nov; 32(11):556-563. PubMed ID: 25282035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vascularized microfluidic platforms to mimic the tumor microenvironment.
    Michna R; Gadde M; Ozkan A; DeWitt M; Rylander M
    Biotechnol Bioeng; 2018 Nov; 115(11):2793-2806. PubMed ID: 29940072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Microdevice Platform Recapitulating Hypoxic Tumor Microenvironments.
    Ando Y; Ta HP; Yen DP; Lee SS; Raola S; Shen K
    Sci Rep; 2017 Nov; 7(1):15233. PubMed ID: 29123197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Reconstitution of Tumor Microenvironment for Nanomedical Applications.
    Oh HJ; Kim J; Kim H; Choi N; Chung S
    Adv Healthc Mater; 2021 May; 10(9):e2002122. PubMed ID: 33576178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recapitulating Tumor Hypoxia in a Cleanroom-Free, Liquid-Pinning-Based Microfluidic Tumor Model.
    Oh JM; Begum HM; Liu YL; Ren Y; Shen K
    ACS Biomater Sci Eng; 2022 Jul; 8(7):3107-3121. PubMed ID: 35678715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypoxic behavior in cells under controlled microfluidic environment.
    Morshed A; Dutta P
    Biochim Biophys Acta Gen Subj; 2017 Apr; 1861(4):759-771. PubMed ID: 28111315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor Microenvironment and Nitric Oxide: Concepts and Mechanisms.
    Vedenko A; Panara K; Goldstein G; Ramasamy R; Arora H
    Adv Exp Med Biol; 2020; 1277():143-158. PubMed ID: 33119871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent research advances of the biomimetic tumor microenvironment and regulatory factors on microfluidic devices: A systematic review.
    Xu H; Cheng C; Le W
    Electrophoresis; 2022 Apr; 43(7-8):839-847. PubMed ID: 35179796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metastasis in context: modeling the tumor microenvironment with cancer-on-a-chip approaches.
    Sleeboom JJF; Eslami Amirabadi H; Nair P; Sahlgren CM; den Toonder JMJ
    Dis Model Mech; 2018 Mar; 11(3):. PubMed ID: 29555848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidics meets 3D cancer cell migration.
    Mehta P; Rahman Z; Ten Dijke P; Boukany PE
    Trends Cancer; 2022 Aug; 8(8):683-697. PubMed ID: 35568647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging Technologies for Cancer Research: Towards Personalized Medicine with Microfluidic Platforms and 3D Tumor Models.
    Turetta M; Ben FD; Brisotto G; Biscontin E; Bulfoni M; Cesselli D; Colombatti A; Scoles G; Gigli G; Del Mercato LL
    Curr Med Chem; 2018; 25(35):4616-4637. PubMed ID: 29874987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxia: a key player in antitumor immune response. A Review in the Theme: Cellular Responses to Hypoxia.
    Noman MZ; Hasmim M; Messai Y; Terry S; Kieda C; Janji B; Chouaib S
    Am J Physiol Cell Physiol; 2015 Nov; 309(9):C569-79. PubMed ID: 26310815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Tumor Microenvironment: An Introduction to the Development of Microfluidic Devices.
    Kundu B; Caballero D; Abreu CM; Reis RL; Kundu SC
    Adv Exp Med Biol; 2022; 1379():115-138. PubMed ID: 35760990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavior of breast cancer cells under oxygen concentration gradients in a microfluidic device.
    Aratake S; Kawahara N; Funamoto K
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and characterization of a microfluidic model of the tumour microenvironment.
    Ayuso JM; Virumbrales-Muñoz M; Lacueva A; Lanuza PM; Checa-Chavarria E; Botella P; Fernández E; Doblare M; Allison SJ; Phillips RM; Pardo J; Fernandez LJ; Ochoa I
    Sci Rep; 2016 Oct; 6():36086. PubMed ID: 27796335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cells, tissues, and organs on chips: challenges and opportunities for the cancer tumor microenvironment.
    Young EW
    Integr Biol (Camb); 2013 Sep; 5(9):1096-109. PubMed ID: 23799587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor Hypoxia: Causative Mechanisms, Microregional Heterogeneities, and the Role of Tissue-Based Hypoxia Markers.
    Vaupel P; Mayer A
    Adv Exp Med Biol; 2016; 923():77-86. PubMed ID: 27526128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances in Microfluidic Platforms Applied in Cancer Metastasis: Circulating Tumor Cells' (CTCs) Isolation and Tumor-On-A-Chip.
    Lin Z; Luo G; Du W; Kong T; Liu C; Liu Z
    Small; 2020 Mar; 16(9):e1903899. PubMed ID: 31747120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation of a Simple Microfluidic Platform for High-Dimensional Quantitative Morphological Analysis of Human Mesenchymal Stromal Cells on Polystyrene-Based Substrates.
    Lam J; Marklein RA; Jimenez-Torres JA; Beebe DJ; Bauer SR; Sung KE
    SLAS Technol; 2017 Dec; 22(6):646-661. PubMed ID: 28825968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Microfluidic Method to Mimic Luminal Structures in the Tumor Microenvironment.
    Jiménez-Torres JA; Beebe DJ; Sung KE
    Methods Mol Biol; 2016; 1458():59-69. PubMed ID: 27581014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.