BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

930 related articles for article (PubMed ID: 25282355)

  • 1. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials.
    Bikard D; Euler CW; Jiang W; Nussenzweig PM; Goldberg GW; Duportet X; Fischetti VA; Marraffini LA
    Nat Biotechnol; 2014 Nov; 32(11):1146-50. PubMed ID: 25282355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases.
    Citorik RJ; Mimee M; Lu TK
    Nat Biotechnol; 2014 Nov; 32(11):1141-5. PubMed ID: 25240928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus.
    Park JY; Moon BY; Park JW; Thornton JA; Park YH; Seo KS
    Sci Rep; 2017 Mar; 7():44929. PubMed ID: 28322317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A CRISPR design for next-generation antimicrobials.
    Beisel CL; Gomaa AA; Barrangou R
    Genome Biol; 2014 Nov; 15(11):516. PubMed ID: 25417800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-Cas-Based Antimicrobials: Design, Challenges, and Bacterial Mechanisms of Resistance.
    Mayorga-Ramos A; Zúñiga-Miranda J; Carrera-Pacheco SE; Barba-Ostria C; Guamán LP
    ACS Infect Dis; 2023 Jul; 9(7):1283-1302. PubMed ID: 37347230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria.
    Kiga K; Tan XE; Ibarra-Chávez R; Watanabe S; Aiba Y; Sato'o Y; Li FY; Sasahara T; Cui B; Kawauchi M; Boonsiri T; Thitiananpakorn K; Taki Y; Azam AH; Suzuki M; Penadés JR; Cui L
    Nat Commun; 2020 Jun; 11(1):2934. PubMed ID: 32523110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Type III-A CRISPR immunity promotes mutagenesis of staphylococci.
    Mo CY; Mathai J; Rostøl JT; Varble A; Banh DV; Marraffini LA
    Nature; 2021 Apr; 592(7855):611-615. PubMed ID: 33828299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Endogenous Staphylococcus aureus CRISPR-Cas System Limits Phage Proliferation and Is Efficiently Excised from the Genome as Part of the SCC
    Mikkelsen K; Bowring JZ; Ng YK; Svanberg Frisinger F; Maglegaard JK; Li Q; Sieber RN; Petersen A; Andersen PS; Rostøl JT; Høyland-Kroghsbo NM; Ingmer H
    Microbiol Spectr; 2023 Aug; 11(4):e0127723. PubMed ID: 37404143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial resistance to CRISPR-Cas antimicrobials.
    Uribe RV; Rathmer C; Jahn LJ; Ellabaan MMH; Li SS; Sommer MOA
    Sci Rep; 2021 Aug; 11(1):17267. PubMed ID: 34446818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using CRISPR-Cas systems as antimicrobials.
    Bikard D; Barrangou R
    Curr Opin Microbiol; 2017 Jun; 37():155-160. PubMed ID: 28888103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conjugative Delivery of CRISPR-Cas9 for the Selective Depletion of Antibiotic-Resistant Enterococci.
    Rodrigues M; McBride SW; Hullahalli K; Palmer KL; Duerkop BA
    Antimicrob Agents Chemother; 2019 Nov; 63(11):. PubMed ID: 31527030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recombination between phages and CRISPR-cas loci facilitates horizontal gene transfer in staphylococci.
    Varble A; Meaden S; Barrangou R; Westra ER; Marraffini LA
    Nat Microbiol; 2019 Jun; 4(6):956-963. PubMed ID: 30886355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The IncF plasmid pRSB225 isolated from a municipal wastewater treatment plant's on-site preflooder combining antibiotic resistance and putative virulence functions is highly related to virulence plasmids identified in pathogenic E. coli isolates.
    Wibberg D; Szczepanowski R; Eikmeyer F; Pühler A; Schlüter A
    Plasmid; 2013 Mar; 69(2):127-37. PubMed ID: 23212116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-Cas system: a potential alternative tool to cope antibiotic resistance.
    Aslam B; Rasool M; Idris A; Muzammil S; Alvi RF; Khurshid M; Rasool MH; Zhang D; Ma Z; Baloch Z
    Antimicrob Resist Infect Control; 2020 Aug; 9(1):131. PubMed ID: 32778162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering conjugative CRISPR-Cas9 systems for the targeted control of enteric pathogens and antibiotic resistance.
    Sheng H; Wu S; Xue Y; Zhao W; Caplan AB; Hovde CJ; Minnich SA
    PLoS One; 2023; 18(9):e0291520. PubMed ID: 37699034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and functional study of type III-A CRISPR-Cas systems in clinical isolates of Staphylococcus aureus.
    Cao L; Gao CH; Zhu J; Zhao L; Wu Q; Li M; Sun B
    Int J Med Microbiol; 2016 Dec; 306(8):686-696. PubMed ID: 27600408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enterococcus faecalis CRISPR-Cas Is a Robust Barrier to Conjugative Antibiotic Resistance Dissemination in the Murine Intestine.
    Price VJ; McBride SW; Hullahalli K; Chatterjee A; Duerkop BA; Palmer KL
    mSphere; 2019 Jul; 4(4):. PubMed ID: 31341074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the Interplay of the CRISPR-CAS System with Antibiotic Resistance in
    Shabbir MAB; Ul-Rahman A; Iftikhar MR; Rasheed M; Maan MK; Sattar A; Ahmad M; Khan FA; Ahmad W; Riaz MI; Aslam HB
    Medicina (Kaunas); 2024 Jan; 60(1):. PubMed ID: 38256391
    [No Abstract]   [Full Text] [Related]  

  • 19. Strategies for Editing Virulent Staphylococcal Phages Using CRISPR-Cas10.
    Bari SMN; Walker FC; Cater K; Aslan B; Hatoum-Aslan A
    ACS Synth Biol; 2017 Dec; 6(12):2316-2325. PubMed ID: 28885820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9-Mediated Re-Sensitization of Antibiotic-Resistant Escherichia coli Harboring Extended-Spectrum β-Lactamases.
    Kim JS; Cho DH; Park M; Chung WJ; Shin D; Ko KS; Kweon DH
    J Microbiol Biotechnol; 2016 Feb; 26(2):394-401. PubMed ID: 26502735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 47.