BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 25282622)

  • 1. Acquisition of epithelial-mesenchymal transition and cancer stem-like phenotypes within chitosan-hyaluronan membrane-derived 3D tumor spheroids.
    Huang YJ; Hsu SH
    Biomaterials; 2014 Dec; 35(38):10070-9. PubMed ID: 25282622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chitosan-hyaluronan based 3D co-culture platform for studying the crosstalk of lung cancer cells and mesenchymal stem cells.
    Han HW; Hsu SH
    Acta Biomater; 2016 Sep; 42():157-167. PubMed ID: 27296841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spheroid formation of mesenchymal stem cells on chitosan and chitosan-hyaluronan membranes.
    Huang GS; Dai LG; Yen BL; Hsu SH
    Biomaterials; 2011 Oct; 32(29):6929-45. PubMed ID: 21762982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enrichment of glioma stem cell-like cells on 3D porous scaffolds composed of different extracellular matrix.
    Wang X; Dai X; Zhang X; Li X; Xu T; Lan Q
    Biochem Biophys Res Commun; 2018 Apr; 498(4):1052-1057. PubMed ID: 29551682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate-dependent Wnt signaling in MSC differentiation within biomaterial-derived 3D spheroids.
    Hsu SH; Huang GS
    Biomaterials; 2013 Jul; 34(20):4725-38. PubMed ID: 23562051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomaterial substrate-derived compact cellular spheroids mimicking the behavior of pancreatic cancer and microenvironment.
    Wong CW; Han HW; Tien YW; Hsu SH
    Biomaterials; 2019 Aug; 213():119202. PubMed ID: 31132644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional constructs using hyaluronan cell carrier as a tool for the study of cancer stem cells.
    Martínez-Ramos C; Lebourg M
    J Biomed Mater Res B Appl Biomater; 2015 Aug; 103(6):1249-57. PubMed ID: 25350680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomaterial Substrate-Mediated Multicellular Spheroid Formation and Their Applications in Tissue Engineering.
    Tseng TC; Wong CW; Hsieh FY; Hsu SH
    Biotechnol J; 2017 Dec; 12(12):. PubMed ID: 28925549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The calcium-dependent regulation of spheroid formation and cardiomyogenic differentiation for MSCs on chitosan membranes.
    Yeh HY; Liu BH; Hsu SH
    Biomaterials; 2012 Dec; 33(35):8943-54. PubMed ID: 22985995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinstructive microparticles for self-assembly of mesenchymal stem Cell-3D tumor spheroids.
    Ferreira LP; Gaspar VM; Mano JF
    Biomaterials; 2018 Dec; 185():155-173. PubMed ID: 30245385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticle uptake and gene transfer efficiency for MSCs on chitosan and chitosan-hyaluronan substrates.
    Hsu SH; Ho TT; Tseng TC
    Biomaterials; 2012 May; 33(14):3639-50. PubMed ID: 22364729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core/shell multicellular spheroids on chitosan as in vitro 3D coculture tumor models.
    Tsai CW; Wang JH; Young TH
    Artif Cells Nanomed Biotechnol; 2018; 46(sup3):S651-S660. PubMed ID: 30311795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three Dimensional Mixed-Cell Spheroids Mimic Stroma-Mediated Chemoresistance and Invasive Migration in hepatocellular carcinoma.
    Khawar IA; Park JK; Jung ES; Lee MA; Chang S; Kuh HJ
    Neoplasia; 2018 Aug; 20(8):800-812. PubMed ID: 29981501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulating Three-Dimensional Microenvironment with Hyaluronan of Different Molecular Weights Alters Breast Cancer Cell Invasion Behavior.
    Zhao YF; Qiao SP; Shi SL; Yao LF; Hou XL; Li CF; Lin FH; Guo K; Acharya A; Chen XB; Nie Y; Tian WM
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):9327-9338. PubMed ID: 28240531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-culture of 3D tumor spheroids with fibroblasts as a model for epithelial-mesenchymal transition in vitro.
    Kim SA; Lee EK; Kuh HJ
    Exp Cell Res; 2015 Jul; 335(2):187-96. PubMed ID: 26022665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epithelial-To-Mesenchymal Transition Markers and CD44 Isoforms Are Differently Expressed in 2D and 3D Cell Cultures of Prostate Cancer Cells.
    Fontana F; Raimondi M; Marzagalli M; Sommariva M; Limonta P; Gagliano N
    Cells; 2019 Feb; 8(2):. PubMed ID: 30754655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities.
    Cheng NC; Wang S; Young TH
    Biomaterials; 2012 Feb; 33(6):1748-58. PubMed ID: 22153870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterning hypoxic multicellular spheroids in a 3D matrix - a promising method for anti-tumor drug screening.
    Ma J; Zhang X; Liu Y; Yu H; Liu L; Shi Y; Li Y; Qin J
    Biotechnol J; 2016 Jan; 11(1):127-34. PubMed ID: 26647062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Independently Tuning the Biochemical and Mechanical Properties of 3D Hyaluronan-Based Hydrogels with Oxime and Diels-Alder Chemistry to Culture Breast Cancer Spheroids.
    Baker AEG; Tam RY; Shoichet MS
    Biomacromolecules; 2017 Dec; 18(12):4373-4384. PubMed ID: 29040808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porous chitosan-hyaluronic acid scaffolds as a mimic of glioblastoma microenvironment ECM.
    Florczyk SJ; Wang K; Jana S; Wood DL; Sytsma SK; Sham J; Kievit FM; Zhang M
    Biomaterials; 2013 Dec; 34(38):10143-50. PubMed ID: 24075410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.