BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

605 related articles for article (PubMed ID: 25282639)

  • 1. Improved ethanol production from xylose in the presence of acetic acid by the overexpression of the HAA1 gene in Saccharomyces cerevisiae.
    Sakihama Y; Hasunuma T; Kondo A
    J Biosci Bioeng; 2015 Mar; 119(3):297-302. PubMed ID: 25282639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving Acetic Acid and Furfural Resistance of Xylose-Fermenting Saccharomyces cerevisiae Strains by Regulating Novel Transcription Factors Revealed via Comparative Transcriptomic Analysis.
    Li B; Wang L; Wu YJ; Xia ZY; Yang BX; Tang YQ
    Appl Environ Microbiol; 2021 Apr; 87(10):. PubMed ID: 33712428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic effects of TAL1 over-expression and PHO13 deletion on the weak acid inhibition of xylose fermentation by industrial Saccharomyces cerevisiae strain.
    Li YC; Gou ZX; Liu ZS; Tang YQ; Akamatsu T; Kida K
    Biotechnol Lett; 2014 Oct; 36(10):2011-21. PubMed ID: 24966040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HAA1 and PRS3 overexpression boosts yeast tolerance towards acetic acid improving xylose or glucose consumption: unravelling the underlying mechanisms.
    Cunha JT; Costa CE; Ferraz L; Romaní A; Johansson B; Sá-Correia I; Domingues L
    Appl Microbiol Biotechnol; 2018 May; 102(10):4589-4600. PubMed ID: 29607452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural.
    Fujitomi K; Sanda T; Hasunuma T; Kondo A
    Bioresour Technol; 2012 May; 111():161-6. PubMed ID: 22357292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae.
    Casey E; Sedlak M; Ho NW; Mosier NS
    FEMS Yeast Res; 2010 Jun; 10(4):385-93. PubMed ID: 20402796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of manganese ions on ethanol fermentation by xylose isomerase expressing Saccharomyces cerevisiae under acetic acid stress.
    Ko JK; Um Y; Lee SM
    Bioresour Technol; 2016 Dec; 222():422-430. PubMed ID: 27744166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural.
    Hasunuma T; Ismail KSK; Nambu Y; Kondo A
    J Biosci Bioeng; 2014 Feb; 117(2):165-169. PubMed ID: 23916856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of RCK1 improves acetic acid tolerance in Saccharomyces cerevisiae.
    Oh EJ; Wei N; Kwak S; Kim H; Jin YS
    J Biotechnol; 2019 Feb; 292():1-4. PubMed ID: 30615911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates.
    Lopes DD; Rosa CA; Hector RE; Dien BS; Mertens JA; Ayub MAZ
    J Ind Microbiol Biotechnol; 2017 Nov; 44(11):1575-1588. PubMed ID: 28891041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of yeast tolerance to acetic acid through Haa1 transcription factor engineering: towards the underlying mechanisms.
    Swinnen S; Henriques SF; Shrestha R; Ho PW; Sá-Correia I; Nevoigt E
    Microb Cell Fact; 2017 Jan; 16(1):7. PubMed ID: 28068993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inverse metabolic engineering based on transient acclimation of yeast improves acid-containing xylose fermentation and tolerance to formic and acetic acids.
    Hasunuma T; Sakamoto T; Kondo A
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):1027-38. PubMed ID: 26521247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae.
    Wright J; Bellissimi E; de Hulster E; Wagner A; Pronk JT; van Maris AJ
    FEMS Yeast Res; 2011 May; 11(3):299-306. PubMed ID: 21251209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering.
    Chen Y; Stabryla L; Wei N
    Appl Environ Microbiol; 2016 Jan; 82(7):2156-2166. PubMed ID: 26826231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a recombinant flocculent Saccharomyces cerevisiae strain that co-ferments glucose and xylose: II. influence of pH and acetic acid on ethanol production.
    Matsushika A; Sawayama S
    Appl Biochem Biotechnol; 2012 Dec; 168(8):2094-104. PubMed ID: 23076570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae.
    Hasunuma T; Sanda T; Yamada R; Yoshimura K; Ishii J; Kondo A
    Microb Cell Fact; 2011 Jan; 10(1):2. PubMed ID: 21219616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulatory mechanism of Haa1p and Tye7p in Saccharomyces cerevisiae when fermenting mixed glucose and xylose with or without inhibitors.
    Li B; Wang L; Xie JY; Xia ZY; Xie CY; Tang YQ
    Microb Cell Fact; 2022 May; 21(1):105. PubMed ID: 35643525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization.
    Madhavan A; Tamalampudi S; Srivastava A; Fukuda H; Bisaria VS; Kondo A
    Appl Microbiol Biotechnol; 2009 Apr; 82(6):1037-47. PubMed ID: 19125247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of a mutant recombinant Saccharomyces cerevisiae strain with high efficiency xylose utilization.
    Tomitaka M; Taguchi H; Fukuda K; Akamatsu T; Kida K
    J Biosci Bioeng; 2013 Dec; 116(6):706-15. PubMed ID: 23810666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1.
    Zhang MM; Zhao XQ; Cheng C; Bai FW
    Biotechnol J; 2015 Dec; 10(12):1903-11. PubMed ID: 26479519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.