BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 25283175)

  • 1. Developing antifouling biointerfaces based on bioinspired zwitterionic dopamine through pH-modulated assembly.
    Huang CJ; Wang LC; Shyue JJ; Chang YC
    Langmuir; 2014 Oct; 30(42):12638-46. PubMed ID: 25283175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A versatile approach to antimicrobial coatings via metal-phenolic networks.
    Ko MP; Huang CJ
    Colloids Surf B Biointerfaces; 2020 Mar; 187():110771. PubMed ID: 31911040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-inspired multifunctional catecholic assembly for photo-programmable biointerface.
    Huang CJ; Wang LC
    Colloids Surf B Biointerfaces; 2015 Oct; 134():247-53. PubMed ID: 26208296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural zwitterionic organosulfurs as surface ligands for antifouling and responsive properties.
    Huang CJ; Wang LC; Liu CY; Chiang AS; Chang YC
    Biointerphases; 2014 Jun; 9(2):029010. PubMed ID: 24985214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties.
    Jin X; Yuan J; Shen J
    Colloids Surf B Biointerfaces; 2016 Sep; 145():275-284. PubMed ID: 27208441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Antimicrobial and Antifouling Universal Coating via Rapid Deposition of Polydopamine and Zwitterionization.
    Fan YJ; Pham MT; Huang CJ
    Langmuir; 2019 Feb; 35(5):1642-1651. PubMed ID: 30114915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate-Independent Robust and Heparin-Mimetic Hydrogel Thin Film Coating via Combined LbL Self-Assembly and Mussel-Inspired Post-Cross-linking.
    Ma L; Cheng C; He C; Nie C; Deng J; Sun S; Zhao C
    ACS Appl Mater Interfaces; 2015 Dec; 7(47):26050-62. PubMed ID: 26553500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zwitterionic sulfobetaine polymer-immobilized surface by simple tyrosinase-mediated grafting for enhanced antifouling property.
    Kwon HJ; Lee Y; Phuong LT; Seon GM; Kim E; Park JC; Yoon H; Park KD
    Acta Biomater; 2017 Oct; 61():169-179. PubMed ID: 28782724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Mussel-Inspired Surface Zwitteration for Enhanced Antifouling and Antibacterial Properties.
    Asha AB; Chen Y; Zhang H; Ghaemi S; Ishihara K; Liu Y; Narain R
    Langmuir; 2019 Feb; 35(5):1621-1630. PubMed ID: 30558423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification of silicone elastomer with zwitterionic silane for durable antifouling properties.
    Yeh SB; Chen CS; Chen WY; Huang CJ
    Langmuir; 2014 Sep; 30(38):11386-93. PubMed ID: 25185951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silica Nanoparticles Functionalized with Zwitterionic Sulfobetaine Siloxane for Application as a Versatile Antifouling Coating System.
    Knowles BR; Wagner P; Maclaughlin S; Higgins MJ; Molino PJ
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18584-18594. PubMed ID: 28523917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catechol-functionalized sulfobetaine polymer for uniform zwitterionization via pH transition approach.
    Bui HL; Huang SD; Lee BP; Lan MY; Huang CJ
    Colloids Surf B Biointerfaces; 2022 Dec; 220():112879. PubMed ID: 36215898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultralow fouling polyacrylamide on gold surfaces via surface-initiated atom transfer radical polymerization.
    Liu Q; Singh A; Lalani R; Liu L
    Biomacromolecules; 2012 Apr; 13(4):1086-92. PubMed ID: 22385371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zwitterionic surface grafting of epoxylated sulfobetaine copolymers for the development of stealth biomaterial interfaces.
    Chou YN; Wen TC; Chang Y
    Acta Biomater; 2016 Aug; 40():78-91. PubMed ID: 27045347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface modification with zwitterionic cysteine betaine for nanoshell-assisted near-infrared plasmonic hyperthermia.
    Huang CJ; Chu SH; Li CH; Lee TR
    Colloids Surf B Biointerfaces; 2016 Sep; 145():291-300. PubMed ID: 27208443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spreading of Cell Aggregates on Zwitterion-Modified Chitosan Films.
    Qi B; Feng H; Qiu X; Beaune G; Guo X; Brochard-Wyart F; Winnik FM
    Langmuir; 2019 Feb; 35(5):1902-1908. PubMed ID: 30142974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative fabrication, performance optimization and comparison of PEG and zwitterionic polymer antifouling coatings.
    Xing CM; Meng FN; Quan M; Ding K; Dang Y; Gong YK
    Acta Biomater; 2017 Sep; 59():129-138. PubMed ID: 28663144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grafting of architecture controlled poly(styrene sodium sulfonate) onto titanium surfaces using bio-adhesive molecules: Surface characterization and biological properties.
    Chouirfa H; Evans MDM; Castner DG; Bean P; Mercier D; Galtayries A; Falentin-Daudré C; Migonney V
    Biointerphases; 2017 Jun; 12(2):02C418. PubMed ID: 28614950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired Zwitterionic Surface Coatings with Robust Photostability and Fouling Resistance.
    Huang CJ; Chu SH; Wang LC; Li CH; Lee TR
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23776-86. PubMed ID: 26452141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein and bacterial fouling characteristics of peptide and antibody decorated surfaces of PEG-poly(acrylic acid) co-polymers.
    Wagner VE; Koberstein JT; Bryers JD
    Biomaterials; 2004 May; 25(12):2247-63. PubMed ID: 14741590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.