BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 25283387)

  • 1. RARβ2 expression is induced by the down-regulation of microRNA 133a during caudal spinal cord regeneration in the adult newt.
    Lepp AC; Carlone RL
    Dev Dyn; 2014 Dec; 243(12):1581-90. PubMed ID: 25283387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNA dysregulation in response to RARβ2 inhibition reveals a negative feedback loop between MicroRNAs 1, 133a, and RARβ2 during tail and spinal cord regeneration in the adult newt.
    Lepp AC; Carlone RL
    Dev Dyn; 2015 Dec; 244(12):1519-37. PubMed ID: 26332998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and expression of a retinoic acid receptor β2 subtype from the adult newt: evidence for an early role in tail and caudal spinal cord regeneration.
    Carter C; Clark A; Spencer G; Carlone R
    Dev Dyn; 2011 Dec; 240(12):2613-25. PubMed ID: 22052812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Urodele spinal cord regeneration and related processes.
    Chernoff EA; Stocum DL; Nye HL; Cameron JA
    Dev Dyn; 2003 Feb; 226(2):295-307. PubMed ID: 12557207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. miR-128 regulates non-myocyte hyperplasia, deposition of extracellular matrix and Islet1 expression during newt cardiac regeneration.
    Witman N; Heigwer J; Thaler B; Lui WO; Morrison JI
    Dev Biol; 2013 Nov; 383(2):253-63. PubMed ID: 24055866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinoid X receptor α downregulation is required for tail and caudal spinal cord regeneration in the adult newt.
    Walker SE; Nottrodt R; Maddalena L; Carter C; Spencer GE; Carlone RL
    Neural Regen Res; 2018 Jun; 13(6):1036-1045. PubMed ID: 29926831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinoic acid receptor beta2 promotes functional regeneration of sensory axons in the spinal cord.
    Wong LF; Yip PK; Battaglia A; Grist J; Corcoran J; Maden M; Azzouz M; Kingsman SM; Kingsman AJ; Mazarakis ND; McMahon SB
    Nat Neurosci; 2006 Feb; 9(2):243-50. PubMed ID: 16388307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinoic acid-dependent attraction of adult spinal cord axons towards regenerating newt limb blastemas in vitro.
    Dmetrichuk JM; Spencer GE; Carlone RL
    Dev Biol; 2005 May; 281(1):112-20. PubMed ID: 15848393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. miR-196 is an essential early-stage regulator of tail regeneration, upstream of key spinal cord patterning events.
    Sehm T; Sachse C; Frenzel C; Echeverri K
    Dev Biol; 2009 Oct; 334(2):468-80. PubMed ID: 19682983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of microRNAs and other small RNAs from the adult newt eye.
    Makarev E; Spence JR; Del Rio-Tsonis K; Tsonis PA
    Mol Vis; 2006 Nov; 12():1386-91. PubMed ID: 17149364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Up-regulation of neural stem cell markers suggests the occurrence of dedifferentiation in regenerating spinal cord.
    Walder S; Zhang F; Ferretti P
    Dev Genes Evol; 2003 Dec; 213(12):625-30. PubMed ID: 14608505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal cord regeneration: a phenomenon unique to urodeles?
    Chernoff EA
    Int J Dev Biol; 1996 Aug; 40(4):823-31. PubMed ID: 8877457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Administration of microRNA-210 promotes spinal cord regeneration in mice.
    Ujigo S; Kamei N; Hadoush H; Fujioka Y; Miyaki S; Nakasa T; Tanaka N; Nakanishi K; Eguchi A; Sunagawa T; Ochi M
    Spine (Phila Pa 1976); 2014 Jun; 39(14):1099-107. PubMed ID: 24732841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clonal cell cultures from adult spinal cord of the amphibian urodele Pleurodeles waltl to study the identity and potentialities of cells during tail regeneration.
    Benraiss A; Caubit X; Arsanto JP; Coulon J; Nicolas S; Le Parco Y; Thouveny Y
    Dev Dyn; 1996 Feb; 205(2):135-49. PubMed ID: 8834474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tenascin expression in developing, adult and regenerating caudal spinal cord in the urodele amphibians.
    Caubit X; Riou JF; Coulon J; Arsanto JP; Benraiss A; Boucaut JC; Thouveny Y
    Int J Dev Biol; 1994 Dec; 38(4):661-72. PubMed ID: 7540033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of polysialylated neural cell adhesion molecule (PSA-N-CAM) in developing, adult and regenerating caudal spinal cord of the urodele amphibians.
    Caubit X; Arsanto JP; Figarella-Branger D; Thouveny Y
    Int J Dev Biol; 1993 Jun; 37(2):327-36. PubMed ID: 8398680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of ependyma in regeneration of the spinal cord in the urodele amphibian tail.
    Nordlander RH; Singer M
    J Comp Neurol; 1978 Jul; 180(2):349-74. PubMed ID: 659666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular cloning and altered expression of Pbx4 in the spinal cord during tail regeneration of Gekko japonicus.
    Wang Y; Jiang X; Liu Y; Gu X; Huan Y; Ren L; Ding F; Gu X
    Brain Res Bull; 2009 Dec; 80(6):414-21. PubMed ID: 19712730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L1, beta1 integrin, and cadherins mediate axonal regeneration in the embryonic spinal cord.
    Blackmore M; Letourneau PC
    J Neurobiol; 2006 Dec; 66(14):1564-83. PubMed ID: 17058193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RARs and microRNAs.
    Nervi C; Grignani F
    Subcell Biochem; 2014; 70():151-79. PubMed ID: 24962885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.