These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 25283468)

  • 1. Microdamage assessment of bone-cement interfaces under monotonic and cyclic compression.
    Tozzi G; Zhang QH; Tong J
    J Biomech; 2014 Nov; 47(14):3466-74. PubMed ID: 25283468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro-mechanical damage of trabecular bone-cement interface under selected loading conditions: a finite element study.
    Zhang QH; Tozzi G; Tong J
    Comput Methods Biomech Biomed Engin; 2014; 17(3):230-8. PubMed ID: 22515517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D real-time micromechanical compressive behaviour of bone-cement interface: experimental and finite element studies.
    Tozzi G; Zhang QH; Tong J
    J Biomech; 2012 Jan; 45(2):356-63. PubMed ID: 22055427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element prediction with experimental validation of damage distribution in single trabeculae during three-point bending tests.
    Ridha H; Thurner PJ
    J Mech Behav Biomed Mater; 2013 Nov; 27():94-106. PubMed ID: 23890577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial resolution and measurement uncertainty of strains in bone and bone-cement interface using digital volume correlation.
    Zhu ML; Zhang QH; Lupton C; Tong J
    J Mech Behav Biomed Mater; 2016 Apr; 57():269-79. PubMed ID: 26741534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element simulation of cement-bone interface micromechanics: a comparison to experimental results.
    Janssen D; Mann KA; Verdonschot N
    J Orthop Res; 2009 Oct; 27(10):1312-8. PubMed ID: 19340877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cement interface and bone stress in total hip arthroplasty: Relationship to head size.
    Alonso-Rasgado T; Del-Valle-Mojica JF; Jimenez-Cruz D; Bailey CG; Board TN
    J Orthop Res; 2018 Nov; 36(11):2966-2977. PubMed ID: 29774956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stress shielding in bone of a bone-cement interface.
    Zhang QH; Cossey A; Tong J
    Med Eng Phys; 2016 Apr; 38(4):423-6. PubMed ID: 26904919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microdamage accumulation in the cement layer of hip replacements under flexural loading.
    McCormack BA; Prendergast PJ
    J Biomech; 1999 May; 32(5):467-75. PubMed ID: 10327000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting the failure response of cement-bone constructs using a non-linear fracture mechanics approach.
    Mann KA; Damron LA
    J Biomech Eng; 2002 Aug; 124(4):462-70. PubMed ID: 12188213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probability of mechanical loosening of the femoral component in high flexion total knee arthroplasty can be reduced by rather simple surgical techniques.
    van de Groes S; de Waal-Malefijt M; Verdonschot N
    Knee; 2014 Jan; 21(1):209-15. PubMed ID: 23731496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trabecular bone microdamage and microstructural stresses under uniaxial compression.
    Nagaraja S; Couse TL; Guldberg RE
    J Biomech; 2005 Apr; 38(4):707-16. PubMed ID: 15713291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of a metallic foam-cement composite under selected loading conditions.
    Tozzi G; Zhang QH; Lupton C; Tong J; Guillen T; Ohrndorf A; Christ HJ
    J Mater Sci Mater Med; 2013 Nov; 24(11):2509-18. PubMed ID: 23846838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling cement augmentation: a comparative experimental and finite element study at the continuum level.
    Zhao Y; Jin ZM; Wilcox RK
    Proc Inst Mech Eng H; 2010; 224(7):903-11. PubMed ID: 20839657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microdamage accumulation in bovine trabecular bone in uniaxial compression.
    Arthur Moore TL; Gibson LJ
    J Biomech Eng; 2002 Feb; 124(1):63-71. PubMed ID: 11873773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the onset and propagation of trabecular bone microdamage during low-cycle fatigue.
    Kosmopoulos V; Schizas C; Keller TS
    J Biomech; 2008; 41(3):515-22. PubMed ID: 18076887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Influence of proximal stem geometry and stem-cement interface characteristics on bone and cement stresses in femoral hip arthroplasty: finite element analysis].
    Massin P; Astoin E; Lavaste F
    Rev Chir Orthop Reparatrice Appar Mot; 2003 Apr; 89(2):134-43. PubMed ID: 12844057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of bioactive PMMA-based bone cement under load-bearing conditions: an in vivo evaluation and FE simulation.
    Fottner A; Nies B; Kitanovic D; Steinbrück A; Mayer-Wagner S; Schröder C; Heinemann S; Pohl U; Jansson V
    J Mater Sci Mater Med; 2016 Sep; 27(9):138. PubMed ID: 27530301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of cement compressive strength and porosity on augmentation performance in a model of orthopedic screw pull-out.
    Pujari-Palmer M; Robo C; Persson C; Procter P; Engqvist H
    J Mech Behav Biomed Mater; 2018 Jan; 77():624-633. PubMed ID: 29100205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does increased bone-cement interface strength have negative consequences for bulk cement integrity? A finite element study.
    Pérez MA; García-Aznar JM; Doblaré M
    Ann Biomed Eng; 2009 Mar; 37(3):454-66. PubMed ID: 19085106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.