These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 25283468)

  • 41. Pre-yield and post-yield shear behavior of the cement-bone interface.
    Mann KA; Allen MJ; Ayers DC
    J Orthop Res; 1998 May; 16(3):370-8. PubMed ID: 9671933
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Subchondral bone microarchitecture and failure mechanism under compression: A finite element study.
    Malekipour F; Oetomo D; Lee PV
    J Biomech; 2017 Apr; 55():85-91. PubMed ID: 28284669
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Static and fatigue mechanical behavior of bone cement with elevated barium sulfate content for treatment of vertebral compression fractures.
    Kurtz SM; Villarraga ML; Zhao K; Edidin AA
    Biomaterials; 2005 Jun; 26(17):3699-712. PubMed ID: 15621260
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Axial-shear interaction effects on microdamage in bovine tibial trabecular bone.
    Wang X; Guyette J; Liu X; Roeder RK; Niebur GL
    Eur J Morphol; 2005; 42(1-2):61-70. PubMed ID: 16123025
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Compressive behaviour of bovine cancellous bone and bone analogous materials, microCT characterisation and FE analysis.
    Guillén T; Zhang QH; Tozzi G; Ohrndorf A; Christ HJ; Tong J
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1452-61. PubMed ID: 21783155
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Experimental micromechanics of the cement-bone interface.
    Mann KA; Miller MA; Cleary RJ; Janssen D; Verdonschot N
    J Orthop Res; 2008 Jun; 26(6):872-9. PubMed ID: 18253965
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bone density and anisotropy affect periprosthetic cement and bone stresses after anatomical glenoid replacement: A micro finite element analysis.
    Chevalier Y; Santos I; Müller PE; Pietschmann MF
    J Biomech; 2016 Jun; 49(9):1724-1733. PubMed ID: 27087675
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of weight-bearing on bone-bonding behavior of strontium-containing hydroxyapatite bone cement.
    Ni GX; Lu WW; Tang B; Ngan AH; Chiu KY; Cheung KM; Li ZY; Luk KD
    J Biomed Mater Res A; 2007 Nov; 83(2):570-6. PubMed ID: 17607756
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bone stiffness changes due to microdamage under different loadings.
    Pidaparti RM; Liu Y
    Biomed Mater Eng; 1997; 7(3):193-203. PubMed ID: 9262832
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Damage evolution in acetabular reconstructs under physiological testing in a saline environment.
    Tozzi G; Lupton C; Heaton-Adegbile P; Tong J
    J Biomech; 2012 Jan; 45(2):405-8. PubMed ID: 22018582
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanical characteristics of the stem-cement interface.
    Mann KA; Bartel DL; Wright TM; Ingraffea AR
    J Orthop Res; 1991 Nov; 9(6):798-808. PubMed ID: 1919842
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Measurement of transient and residual stresses during polymerization of bone cement for cemented hip implants.
    Nuño N; Madrala A; Plamondon D
    J Biomech; 2008 Aug; 41(12):2605-11. PubMed ID: 18692188
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bone-cement interfacial behaviour under mixed mode loading conditions.
    Wang JY; Tozzi G; Chen J; Contal F; Lupton C; Tong J
    J Mech Behav Biomed Mater; 2010 Jul; 3(5):392-8. PubMed ID: 20416553
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of torsional loading on compressive fatigue behaviour of trabecular bone.
    Fatihhi SJ; Rabiatul AA; Harun MN; Kadir MR; Kamarul T; Syahrom A
    J Mech Behav Biomed Mater; 2016 Feb; 54():21-32. PubMed ID: 26410762
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microdamage propagation in trabecular bone due to changes in loading mode.
    Wang X; Niebur GL
    J Biomech; 2006; 39(5):781-90. PubMed ID: 16488217
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Compressive fatigue and fracture toughness behavior of injectable, settable bone cements.
    Harmata AJ; Uppuganti S; Granke M; Guelcher SA; Nyman JS
    J Mech Behav Biomed Mater; 2015 Nov; 51():345-55. PubMed ID: 26282077
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fatigue properties and stem subsidence in wire coil reinforced PMMA bone cement: a preliminary in vitro study.
    Kim JK; Park JB
    Biomed Mater Eng; 1996; 6(6):453-62. PubMed ID: 9138655
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Experimental and computational micromechanics at the tibial cement-trabeculae interface.
    Srinivasan P; Miller MA; Verdonschot N; Mann KA; Janssen D
    J Biomech; 2016 Jun; 49(9):1641-1648. PubMed ID: 27079621
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Micro-mechanical modeling of the cement-bone interface: the effect of friction, morphology and material properties on the micromechanical response.
    Janssen D; Mann KA; Verdonschot N
    J Biomech; 2008 Nov; 41(15):3158-63. PubMed ID: 18848699
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mixed-mode failure response of the cement-bone interface.
    Mann KA; Mocarski R; Damron LA; Allen MJ; Ayers DC
    J Orthop Res; 2001 Nov; 19(6):1153-61. PubMed ID: 11781018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.