BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 25283493)

  • 1. Length-dependent plasmon resonance in single-walled carbon nanotubes.
    Morimoto T; Joung SK; Saito T; Futaba DN; Hata K; Okazaki T
    ACS Nano; 2014 Oct; 8(10):9897-904. PubMed ID: 25283493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metallic and semiconducting single-walled carbon nanotubes: differentiating individual SWCNTs by their carbon 1s spectra.
    Rossouw D; Botton GA; Najafi E; Lee V; Hitchcock AP
    ACS Nano; 2012 Dec; 6(12):10965-72. PubMed ID: 23176188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning localized transverse surface plasmon resonance in electricity-selected single-wall carbon nanotubes by electrochemical doping.
    Igarashi T; Kawai H; Yanagi K; Cuong NT; Okada S; Pichler T
    Phys Rev Lett; 2015 May; 114(17):176807. PubMed ID: 25978253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unraveling the 13C NMR chemical shifts in single-walled carbon nanotubes: dependence on diameter and electronic structure.
    Engtrakul C; Irurzun VM; Gjersing EL; Holt JM; Larsen BA; Resasco DE; Blackburn JL
    J Am Chem Soc; 2012 Mar; 134(10):4850-6. PubMed ID: 22332844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The characterization of the concentration of the single-walled carbon nanotubes in aqueous dispersion by UV-Vis-NIR absorption spectroscopy.
    Yang B; Ren L; Li L; Tao X; Shi Y; Zheng Y
    Analyst; 2013 Nov; 138(21):6671-6. PubMed ID: 24000337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic property modification of single-walled carbon nanotubes by encapsulation of sulfur-terminated graphene nanoribbons.
    Pollack A; Alnemrat S; Chamberlain TW; Khlobystov AN; Hooper JP; Osswald S
    Small; 2014 Dec; 10(24):5077-86. PubMed ID: 25123503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron diffraction and electron energy-loss spectroscopy studies of a hybrid material composed of coronene molecules encapsulated in single-walled carbon nanotubes.
    Haque MM; Sato Y; Terauchi M; Iizumi Y; Okazaki T
    Microscopy (Oxf); 2014 Apr; 63(2):111-7. PubMed ID: 24363441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bulk synthesis of large diameter semiconducting single-walled carbon nanotubes by oxygen-assisted floating catalyst chemical vapor deposition.
    Yu B; Liu C; Hou PX; Tian Y; Li S; Liu B; Li F; Kauppinen EI; Cheng HM
    J Am Chem Soc; 2011 Apr; 133(14):5232-5. PubMed ID: 21410172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective removal of metallic single-walled carbon nanotubes with small diameters by using nitric and sulfuric acids.
    Yang CM; Park JS; An KH; Lim SC; Seo K; Kim B; Park KA; Han S; Park CY; Lee YH
    J Phys Chem B; 2005 Oct; 109(41):19242-8. PubMed ID: 16853485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semi-conducting single-walled carbon nanotubes are detrimental when compared to metallic single-walled carbon nanotubes for electrochemical applications.
    Dong Q; Nasir MZM; Pumera M
    Phys Chem Chem Phys; 2017 Oct; 19(40):27320-27325. PubMed ID: 28971187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-energy resolution electron energy-loss spectroscopy study of interband transitions characteristic to single-walled carbon nanotubes.
    Sato Y; Terauchi M
    Microsc Microanal; 2014 Jun; 20(3):807-14. PubMed ID: 24685359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concentration measurement of length-fractionated colloidal single-wall carbon nanotubes.
    Khripin CY; Tu X; Howarter J; Fagan J; Zheng M
    Anal Chem; 2012 Oct; 84(20):8733-9. PubMed ID: 22994360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of acetone with single wall carbon nanotubes at cryogenic temperatures: a combined temperature programmed desorption and theoretical study.
    Kazachkin D; Nishimura Y; Irle S; Morokuma K; Vidic RD; Borguet E
    Langmuir; 2008 Aug; 24(15):7848-56. PubMed ID: 18613702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes.
    Ghosh S; Bachilo SM; Simonette RA; Beckingham KM; Weisman RB
    Science; 2010 Dec; 330(6011):1656-9. PubMed ID: 21109631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-dependent reactivity of semiconducting single-walled carbon nanotubes with benzenediazonium salts.
    Doyle CD; Rocha JD; Weisman RB; Tour JM
    J Am Chem Soc; 2008 May; 130(21):6795-800. PubMed ID: 18454527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chirality and diameter dependent x-ray absorption of single walled carbon nanotubes.
    Gao B; Wu Z; Agren H; Luo Y
    J Chem Phys; 2009 Jul; 131(3):034704. PubMed ID: 19624218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemometric determination of the length distribution of single walled carbon nanotubes through optical spectroscopy.
    Si R; Wang K; Chen T; Chen Y
    Anal Chim Acta; 2011 Dec; 708(1-2):28-36. PubMed ID: 22093341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infrared spectroscopy of single-walled carbon nanotubes.
    Sbai K; Rahmani A; Chadli H; Bantignies JL; Hermet P; Sauvajol JL
    J Phys Chem B; 2006 Jun; 110(25):12388-93. PubMed ID: 16800564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective oxidation on metallic carbon nanotubes by halogen oxoanions.
    Yoon SM; Kim SJ; Shin HJ; Benayad A; Choi SJ; Kim KK; Kim SM; Park YJ; Kim G; Choi JY; Lee YH
    J Am Chem Soc; 2008 Feb; 130(8):2610-6. PubMed ID: 18251473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing carbon nanotube-surfactant interactions with two-dimensional DOSY NMR.
    Shastry TA; Morris-Cohen AJ; Weiss EA; Hersam MC
    J Am Chem Soc; 2013 May; 135(18):6750-3. PubMed ID: 23369051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.