BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 25283954)

  • 1. Ruthenium(II)-catalyzed oxidative C-H alkenylations of sulfonic acids, sulfonyl chlorides and sulfonamides.
    Ma W; Mei R; Tenti G; Ackermann L
    Chemistry; 2014 Nov; 20(46):15248-51. PubMed ID: 25283954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rh-catalyzed sulfonic acid group directed ortho C-H olefination of arenes.
    Dong Y; Liu G
    Chem Commun (Camb); 2013 Sep; 49(73):8066-8. PubMed ID: 23903664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ru(II)-catalyzed intermolecular ortho-C-H amidation of aromatic ketones with sulfonyl azides.
    Bhanuchandra M; Yadav MR; Rit RK; Rao Kuram M; Sahoo AK
    Chem Commun (Camb); 2013 Jun; 49(45):5225-7. PubMed ID: 23628894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ruthenium-catalyzed meta sulfonation of 2-phenylpyridines.
    Saidi O; Marafie J; Ledger AE; Liu PM; Mahon MF; Kociok-Köhn G; Whittlesey MK; Frost CG
    J Am Chem Soc; 2011 Dec; 133(48):19298-301. PubMed ID: 22047022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ruthenium(II)-catalyzed C-H alkenylations of phenols with removable directing groups.
    Ma W; Ackermann L
    Chemistry; 2013 Oct; 19(41):13925-8. PubMed ID: 24018977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative alkenylation of aromatic esters by ruthenium-catalyzed twofold C-H bond cleavages.
    Graczyk K; Ma W; Ackermann L
    Org Lett; 2012 Aug; 14(16):4110-3. PubMed ID: 22849302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trichlorophenol (TCP) sulfonate esters: a selective alternative to pentafluorophenol (PFP) esters and sulfonyl chlorides for the preparation of sulfonamides.
    Wilden JD; Geldeard L; Lee CC; Judd DB; Caddick S
    Chem Commun (Camb); 2007 Mar; (10):1074-6. PubMed ID: 17325810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tandem cyclizations of 1,6-enynes with arylsulfonyl chlorides by using visible-light photoredox catalysis.
    Deng GB; Wang ZQ; Xia JD; Qian PC; Song RJ; Hu M; Gong LB; Li JH
    Angew Chem Int Ed Engl; 2013 Jan; 52(5):1535-8. PubMed ID: 23288810
    [No Abstract]   [Full Text] [Related]  

  • 9. Carboxylate-assisted ruthenium-catalyzed alkyne annulations by C-H/Het-H bond functionalizations.
    Ackermann L
    Acc Chem Res; 2014 Feb; 47(2):281-95. PubMed ID: 23379589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Versatile pyrrole synthesis through ruthenium(II)-catalyzed alkene C-H bond functionalization on enamines.
    Wang L; Ackermann L
    Org Lett; 2013 Jan; 15(1):176-9. PubMed ID: 23256885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ruthenium-catalyzed direct C-H amidation of arenes including weakly coordinating aromatic ketones.
    Kim J; Kim J; Chang S
    Chemistry; 2013 Jun; 19(23):7328-33. PubMed ID: 23616285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amidines for versatile ruthenium(II)-catalyzed oxidative C-H activations with internal alkynes and acrylates.
    Li J; John M; Ackermann L
    Chemistry; 2014 Apr; 20(18):5403-8. PubMed ID: 24677682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dehydrative C-H/N-OH functionalizations in H2O by ruthenium(II) catalysis: subtle effect of carboxylate ligands and mechanistic insight.
    Yang F; Ackermann L
    J Org Chem; 2014 Dec; 79(24):12070-82. PubMed ID: 25335189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ruthenium(II)-catalyzed C-H activation/alkyne annulation by weak coordination with O2 as the sole oxidant.
    Warratz S; Kornhaaß C; Cajaraville A; Niepötter B; Stalke D; Ackermann L
    Angew Chem Int Ed Engl; 2015 Apr; 54(18):5513-7. PubMed ID: 25737001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Versatile synthesis of isocoumarins and α-pyrones by ruthenium-catalyzed oxidative C-H/O-H bond cleavages.
    Ackermann L; Pospech J; Graczyk K; Rauch K
    Org Lett; 2012 Feb; 14(3):930-3. PubMed ID: 22273364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ruthenium Oxidase Catalysis for Site-Selective C-H Alkenylations with Ambient O2 as the Sole Oxidant.
    Bechtoldt A; Tirler C; Raghuvanshi K; Warratz S; Kornhaaß C; Ackermann L
    Angew Chem Int Ed Engl; 2016 Jan; 55(1):264-7. PubMed ID: 26489871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. C-H functionalization of phenols using combined ruthenium and photoredox catalysis: in situ generation of the oxidant.
    Fabry DC; Ronge MA; Zoller J; Rueping M
    Angew Chem Int Ed Engl; 2015 Feb; 54(9):2801-5. PubMed ID: 25644740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequential Ruthenium Catalysis for Olefin Isomerization and Oxidation: Application to the Synthesis of Unusual Amino Acids.
    Liniger M; Liu Y; Stoltz BM
    J Am Chem Soc; 2017 Oct; 139(39):13944-13949. PubMed ID: 28918631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhodium(III)-catalyzed oxidative olefination of N-allyl sulfonamides.
    Hu S; Wang D; Liu J; Li X
    Org Biomol Chem; 2013 May; 11(17):2761-5. PubMed ID: 23532183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ruthenium- and rhodium-catalyzed cross-coupling reaction of acrylamides with alkenes: efficient access to (Z,E)-dienamides.
    Zhang J; Loh TP
    Chem Commun (Camb); 2012 Nov; 48(91):11232-4. PubMed ID: 23069732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.