These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 25284013)

  • 1. Gait deviations and compensations in pediatric patients with increased femoral torsion.
    Bruderer-Hofstetter M; Fenner V; Payne E; Zdenek K; Klima H; Wegener R
    J Orthop Res; 2015 Feb; 33(2):155-62. PubMed ID: 25284013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of increased femoral antetorsion on gait deviations in healthy adolescents.
    Alexander N; Studer K; Lengnick H; Payne E; Klima H; Wegener R
    J Biomech; 2019 Mar; 86():167-174. PubMed ID: 30799079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Femoral anteversion assessment: Comparison of physical examination, gait analysis, and EOS biplanar radiography.
    Westberry DE; Wack LI; Davis RB; Hardin JW
    Gait Posture; 2018 May; 62():285-290. PubMed ID: 29605796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hip- and patellofemoral-joint loading during gait are increased in children with idiopathic torsional deformities.
    Passmore E; Graham HK; Pandy MG; Sangeux M
    Gait Posture; 2018 Jun; 63():228-235. PubMed ID: 29775910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation between lower limb bone morphology and gait characteristics in children with spastic diplegic cerebral palsy.
    Carriero A; Zavatsky A; Stebbins J; Theologis T; Shefelbine SJ
    J Pediatr Orthop; 2009; 29(1):73-9. PubMed ID: 19098651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The functional role of hip muscles during gait in patients with increased femoral anteversion.
    De Pieri E; Cip J; Brunner R; Weidensteiner C; Alexander N
    Gait Posture; 2023 Feb; 100():179-187. PubMed ID: 36563590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical changes associated with femoral derotational osteotomy.
    MacWilliams BA; McMulkin ML; Davis RB; Westberry DE; Baird GO; Stevens PM
    Gait Posture; 2016 Sep; 49():202-206. PubMed ID: 27450671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait analysis in bladder exstrophy patients with and without pelvic osteotomy: a controlled experimental study.
    Petrarca M; Zaccara A; Marciano A; Della Bella G; Mosiello G; Carniel S; Gazzellini S; Capitanucci ML; De Gennaro M; Caione P; Aloi IP; Castelli E
    Eur J Phys Rehabil Med; 2014 Jun; 50(3):265-74. PubMed ID: 24651208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of symptomatic femoral neck anteversion and tibial torsion on gait, function and participation in children and adolescents.
    Mackay J; Thomason P; Sangeux M; Passmore E; Francis K; Graham HK
    Gait Posture; 2021 May; 86():144-149. PubMed ID: 33725582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reliability of principal components and discrete parameters of knee angle and moment gait waveforms in individuals with moderate knee osteoarthritis.
    Robbins SM; Astephen Wilson JL; Rutherford DJ; Hubley-Kozey CL
    Gait Posture; 2013 Jul; 38(3):421-7. PubMed ID: 23357757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Normal and abnormal torsional development in children.
    Fabry G; Cheng LX; Molenaers G
    Clin Orthop Relat Res; 1994 May; (302):22-6. PubMed ID: 8168306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Out-toeing and in-toeing in patients with Perthes disease: role of the femoral hump.
    Yoo WJ; Choi IH; Cho TJ; Chung CY; Park MS; Lee DY
    J Pediatr Orthop; 2008; 28(7):717-22. PubMed ID: 18812896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retrospective Evaluation of Changes in Gait Patterns in Children and Adolescents With Cerebral Palsy After Multilevel Surgery.
    Steppacher R; North D; Künzle C; Lengnick H; Klima H; Mündermann A; Wegener R
    J Child Neurol; 2018 Jun; 33(7):453-462. PubMed ID: 29683017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of age on lower extremity joint kinematics and kinetics during level walking with Masai barefoot technology shoes.
    Buchecker M; Lindinger S; Pfusterschmied J; Müller E
    Eur J Phys Rehabil Med; 2013 Oct; 49(5):675-86. PubMed ID: 23792632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of principal component analysis in clinical gait research: identification of systematic differences between healthy and medial knee-osteoarthritic gait.
    Federolf PA; Boyer KA; Andriacchi TP
    J Biomech; 2013 Sep; 46(13):2173-8. PubMed ID: 23910389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of simulated crouch gait on foot kinematics and kinetics in healthy children.
    Balzer J; Schelldorfer S; Bauer C; van der Linden ML
    Gait Posture; 2013 Sep; 38(4):619-24. PubMed ID: 23473807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Threshold of equinus which alters biomechanical gait parameters in children.
    Houx L; Lempereur M; Rémy-Néris O; Brochard S
    Gait Posture; 2013 Sep; 38(4):582-9. PubMed ID: 23465759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting timing of foot strike during running, independent of striking technique, using principal component analysis of joint angles.
    Osis ST; Hettinga BA; Leitch J; Ferber R
    J Biomech; 2014 Aug; 47(11):2786-9. PubMed ID: 25011620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased Femoral Anteversion Does Not Lead to Increased Joint Forces During Gait in a Cohort of Adolescent Patients.
    Alexander N; Brunner R; Cip J; Viehweger E; De Pieri E
    Front Bioeng Biotechnol; 2022; 10():914990. PubMed ID: 35733525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.