These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 25284255)

  • 21. Oxygen activation in flavoprotein oxidases: the importance of being positive.
    Gadda G
    Biochemistry; 2012 Apr; 51(13):2662-9. PubMed ID: 22432926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxidative nucleophilic strategy for synthesis of thiocyanates and trifluoromethyl sulfides from thiols.
    Yamaguchi K; Sakagami K; Miyamoto Y; Jin X; Mizuno N
    Org Biomol Chem; 2014 Dec; 12(45):9200-6. PubMed ID: 25297894
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biological oxidations and flavoprotein catalysis in Entamoeba histolytica.
    Weinbach EC; Claggett CE; Takeuchi T; Diamond LS
    Arch Invest Med (Mex); 1978; 9 Suppl 1():89-98. PubMed ID: 29583
    [No Abstract]   [Full Text] [Related]  

  • 24. Biomimetic metal-radical reactivity: aerial oxidation of alcohols, amines, aminophenols and catechols catalyzed by transition metal complexes.
    Chaudhuri P; Wieghardt K; Weyhermüller T; Paine TK; Mukherjee S; Mukherjee C
    Biol Chem; 2005 Oct; 386(10):1023-33. PubMed ID: 16218874
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical aspects of amine oxidation by flavoprotein enzymes.
    Scrutton NS
    Nat Prod Rep; 2004 Dec; 21(6):722-30. PubMed ID: 15565251
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biocatalytic Oxidation Reactions: A Chemist's Perspective.
    Dong J; Fernández-Fueyo E; Hollmann F; Paul CE; Pesic M; Schmidt S; Wang Y; Younes S; Zhang W
    Angew Chem Int Ed Engl; 2018 Jul; 57(30):9238-9261. PubMed ID: 29573076
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Epoxidation of conjugated C=C-bonds and sulfur-oxidation of thioethers mediated by NADH:FMN-dependent oxidoreductases.
    Mueller NJ; Stueckler C; Hall M; Macheroux P; Faber K
    Org Biomol Chem; 2009 Mar; 7(6):1115-9. PubMed ID: 19262930
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Candida parapsilosis: A versatile biocatalyst for organic oxidation-reduction reactions.
    Chadha A; Venkataraman S; Preetha R; Padhi SK
    Bioorg Chem; 2016 Oct; 68():187-213. PubMed ID: 27544073
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Purification and properties of a flavoprotein catalyzing the oxidation of reduced ribosyl nicotinamide.
    LIAO S; DULANEY JT; WILLIAMS-ASHMAN HG
    J Biol Chem; 1962 Sep; 237():2981-7. PubMed ID: 14465018
    [No Abstract]   [Full Text] [Related]  

  • 30. Flavoprotein disulfide reductases: advances in chemistry and function.
    Argyrou A; Blanchard JS
    Prog Nucleic Acid Res Mol Biol; 2004; 78():89-142. PubMed ID: 15210329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gas-phase transuranium chemistry: reactions of actinide ions with alcohols and thiols.
    Gibson JK
    J Mass Spectrom; 1999 Nov; 34(11):1166-77. PubMed ID: 10548810
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient Oxidation of 5-Hydroxymethylfurfural Using a Flavoprotein Oxidase from the Honeybee Apis mellifera.
    Tjallinks G; Boverio A; Jager AW; Kaya SG; Mattevi A; Fraaije MW
    Chembiochem; 2023 Dec; 24(24):e202300588. PubMed ID: 37800383
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flavoenzyme catalysed oxidation of amines: roles for flavin and protein-based radicals.
    Rigby SE; Basran J; Combe JP; Mohsen AW; Toogood H; van Thiel A; Sutcliffe MJ; Leys D; Munro AW; Scrutton NS
    Biochem Soc Trans; 2005 Aug; 33(Pt 4):754-7. PubMed ID: 16042592
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inter-domain redox communication in flavoenzymes of the quiescin/sulfhydryl oxidase family: role of a thioredoxin domain in disulfide bond formation.
    Raje S; Thorpe C
    Biochemistry; 2003 Apr; 42(15):4560-8. PubMed ID: 12693953
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidative aldehyde deformylation catalyzed by NADPH-cytochrome P450 reductase and the flavoprotein domain of neuronal nitric oxide synthase.
    Vatsis KP; Coon MJ
    Biochem Biophys Res Commun; 2005 Dec; 337(4):1107-11. PubMed ID: 16226717
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure and function relationships of sugar oxidases and their potential use in biocatalysis.
    Sriwaiyaphram K; Punthong P; Sucharitakul J; Wongnate T
    Enzymes; 2020; 47():193-230. PubMed ID: 32951824
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Palladium oxidase catalysis: selective oxidation of organic chemicals by direct dioxygen-coupled turnover.
    Stahl SS
    Angew Chem Int Ed Engl; 2004 Jun; 43(26):3400-20. PubMed ID: 15221827
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stabilization of the catalytic thiolate in a mammalian glutaredoxin: structure, dynamics and electrostatics of reduced pig glutaredoxin and its mutants.
    Foloppe N; Nilsson L
    J Mol Biol; 2007 Sep; 372(3):798-816. PubMed ID: 17681533
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Covalent attachment of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) to enzymes: the current state of affairs.
    Mewies M; McIntire WS; Scrutton NS
    Protein Sci; 1998 Jan; 7(1):7-20. PubMed ID: 9514256
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nitroalkanes as reductive substrates for flavoprotein oxidases.
    Porter DJ; Voet JG; Bright HJ
    Z Naturforsch B Anorg Chem Org Chem Biochem Biophys Biol; 1972 Sep; 27(9):1052-3. PubMed ID: 4405074
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.