These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 25284803)
1. Reprint of "versatile and stable vectors for efficient gene expression in Ralstonia eutropha H16". Gruber S; Hagen J; Schwab H; Koefinger P J Biotechnol; 2014 Dec; 192 Pt B():410-8. PubMed ID: 25284803 [TBL] [Abstract][Full Text] [Related]
2. Versatile and stable vectors for efficient gene expression in Ralstonia eutropha H16. Gruber S; Hagen J; Schwab H; Koefinger P J Biotechnol; 2014 Sep; 186():74-82. PubMed ID: 24998763 [TBL] [Abstract][Full Text] [Related]
3. Design of inducible expression vectors for improved protein production in Ralstonia eutropha H16 derived host strains. Gruber S; Schwendenwein D; Magomedova Z; Thaler E; Hagen J; Schwab H; Heidinger P J Biotechnol; 2016 Oct; 235():92-9. PubMed ID: 27085887 [TBL] [Abstract][Full Text] [Related]
4. Versatile plasmid-based expression systems for Gram-negative bacteria--General essentials exemplified with the bacterium Ralstonia eutropha H16. Gruber S; Schwab H; Koefinger P N Biotechnol; 2015 Dec; 32(6):552-8. PubMed ID: 25865178 [TBL] [Abstract][Full Text] [Related]
5. Establishment of an alternative phosphoketolase-dependent pathway for fructose catabolism in Ralstonia eutropha H16. Fleige C; Kroll J; Steinbüchel A Appl Microbiol Biotechnol; 2011 Aug; 91(3):769-76. PubMed ID: 21519932 [TBL] [Abstract][Full Text] [Related]
6. An Efficient Transformation Method for the Bioplastic-Producing "Knallgas" Bacterium Ralstonia eutropha H16. Tee KL; Grinham J; Othusitse AM; González-Villanueva M; Johnson AO; Wong TS Biotechnol J; 2017 Nov; 12(11):. PubMed ID: 28755502 [TBL] [Abstract][Full Text] [Related]
7. CbbR and RegA regulate cbb operon transcription in Ralstonia eutropha H16. Gruber S; Schwab H; Heidinger P J Biotechnol; 2017 Sep; 257():78-86. PubMed ID: 28687513 [TBL] [Abstract][Full Text] [Related]
8. Construction of a stable plasmid vector for industrial production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by a recombinant Cupriavidus necator H16 strain. Sato S; Fujiki T; Matsumoto K J Biosci Bioeng; 2013 Dec; 116(6):677-81. PubMed ID: 23816763 [TBL] [Abstract][Full Text] [Related]
9. Development of a gene knockout system for Ralstonia eutropha H16 based on the broad-host-range vector expressing a mobile group II intron. Park JM; Jang YS; Kim TY; Lee SY FEMS Microbiol Lett; 2010 Aug; 309(2):193-200. PubMed ID: 20608980 [TBL] [Abstract][Full Text] [Related]
10. Genome-scale reconstruction and in silico analysis of the Ralstonia eutropha H16 for polyhydroxyalkanoate synthesis, lithoautotrophic growth, and 2-methyl citric acid production. Park JM; Kim TY; Lee SY BMC Syst Biol; 2011 Jun; 5():101. PubMed ID: 21711532 [TBL] [Abstract][Full Text] [Related]
11. Extension of the substrate utilization range of Ralstonia eutropha strain H16 by metabolic engineering to include mannose and glucose. Sichwart S; Hetzler S; Bröker D; Steinbüchel A Appl Environ Microbiol; 2011 Feb; 77(4):1325-34. PubMed ID: 21169447 [TBL] [Abstract][Full Text] [Related]
12. A synthetic anhydrotetracycline-controllable gene expression system in Ralstonia eutropha H16. Li H; Liao JC ACS Synth Biol; 2015 Feb; 4(2):101-6. PubMed ID: 24702232 [TBL] [Abstract][Full Text] [Related]
13. [Engineering of an L-arabinose metabolic pathway in Ralstonia eutropha W50]. Lu X; Liu G; Wang Y; Ding J; Weng W Wei Sheng Wu Xue Bao; 2013 Dec; 53(12):1267-75. PubMed ID: 24697099 [TBL] [Abstract][Full Text] [Related]
14. A novel gene expression system for Ralstonia eutropha based on the T7 promoter. Hu M; Xiong B; Li Z; Liu L; Li S; Zhang C; Zhang X; Bi C BMC Microbiol; 2020 May; 20(1):121. PubMed ID: 32429840 [TBL] [Abstract][Full Text] [Related]
15. An Engineered Constitutive Promoter Set with Broad Activity Range for Cupriavidus necator H16. Johnson AO; Gonzalez-Villanueva M; Tee KL; Wong TS ACS Synth Biol; 2018 Aug; 7(8):1918-1928. PubMed ID: 29949349 [TBL] [Abstract][Full Text] [Related]
16. [Engineering of a D-xylose metabolic pathway in eutropha W50]. Liu K; Liu G; Zhang Y; Ding J; Weng W Wei Sheng Wu Xue Bao; 2014 Jan; 54(1):42-52. PubMed ID: 24783853 [TBL] [Abstract][Full Text] [Related]
17. [Limiting metabolic steps in the utilization of D-xylose by recombinant Ralstonia eutropha W50-EAB]. Wang L; Liu G; Zhang Y; Wang Y; Ding J; Weng W Wei Sheng Wu Xue Bao; 2015 Feb; 55(2):164-75. PubMed ID: 25958696 [TBL] [Abstract][Full Text] [Related]
18. A new shuttle vector for gene expression in biopolymer-producing Ralstonia eutropha. Solaiman DK; Swingle BM; Ashby RD J Microbiol Methods; 2010 Aug; 82(2):120-3. PubMed ID: 20447426 [TBL] [Abstract][Full Text] [Related]
19. Engineering the Calvin-Benson-Bassham cycle and hydrogen utilization pathway of Ralstonia eutropha for improved autotrophic growth and polyhydroxybutyrate production. Li Z; Xin X; Xiong B; Zhao D; Zhang X; Bi C Microb Cell Fact; 2020 Dec; 19(1):228. PubMed ID: 33308236 [TBL] [Abstract][Full Text] [Related]
20. Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha. Lu J; Brigham CJ; Gai CS; Sinskey AJ Appl Microbiol Biotechnol; 2012 Oct; 96(1):283-97. PubMed ID: 22864971 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]