These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Pre-steady-state kinetics of the microtubule-kinesin ATPase. Gilbert SP; Johnson KA Biochemistry; 1994 Feb; 33(7):1951-60. PubMed ID: 8110800 [TBL] [Abstract][Full Text] [Related]
4. Monomeric kinesin head domains hydrolyze multiple ATP molecules before release from a microtubule. Jiang W; Hackney DD J Biol Chem; 1997 Feb; 272(9):5616-21. PubMed ID: 9038170 [TBL] [Abstract][Full Text] [Related]
5. Kinetic studies on the ADP-ATP exchange reaction catalyzed by Na+, K+-dependent ATPase. Evidence for the K.S.T. mechanism with two enzyme-ATP complexes and two phosphorylated intermediates of high-energy type. Yamaguchi M; Tonomura Y J Biochem; 1977 Jan; 81(1):249-60. PubMed ID: 14933 [TBL] [Abstract][Full Text] [Related]
6. A kinetic study of the kinesin ATPase. Sadhu A; Taylor EW J Biol Chem; 1992 Jun; 267(16):11352-9. PubMed ID: 1534560 [TBL] [Abstract][Full Text] [Related]
7. Kinetic studies of dimeric Ncd: evidence that Ncd is not processive. Foster KA; Gilbert SP Biochemistry; 2000 Feb; 39(7):1784-91. PubMed ID: 10677228 [TBL] [Abstract][Full Text] [Related]
8. Kinetic mechanism of monomeric non-claret disjunctional protein (Ncd) ATPase. Pechatnikova E; Taylor EW J Biol Chem; 1997 Dec; 272(49):30735-40. PubMed ID: 9388211 [TBL] [Abstract][Full Text] [Related]
9. Evidence that the 116 kDa component of kinesin binds and hydrolyzes ATP. Penningroth SM; Rose PM; Peterson DD FEBS Lett; 1987 Sep; 222(1):204-10. PubMed ID: 2958362 [TBL] [Abstract][Full Text] [Related]
10. Acceleration of unisite catalysis of mitochondrial F1-adenosinetriphosphatase by ATP, ADP and pyrophosphate--hydrolysis and release of the previously bound [gamma-32P]ATP. García JJ; Gómez-Puyou A; Maldonado E; Tuena De Gómez-Puyou M Eur J Biochem; 1997 Oct; 249(2):622-9. PubMed ID: 9370375 [TBL] [Abstract][Full Text] [Related]
13. A two-site mechanism for ATP hydrolysis by the asymmetric Rep dimer P2S as revealed by site-specific inhibition with ADP-A1F4. Wong I; Lohman TM Biochemistry; 1997 Mar; 36(11):3115-25. PubMed ID: 9115987 [TBL] [Abstract][Full Text] [Related]
14. Bound adenosine 5'-triphosphate formation, bound adenosine 5'-diphosphate and inorganic phosphate retention, and inorganic phosphate oxygen exchange by chloroplast adenosinetriphosphatase in the presence of Ca2+ or Mg2+. Wu D; Boyer PD Biochemistry; 1986 Jun; 25(11):3390-6. PubMed ID: 2873834 [TBL] [Abstract][Full Text] [Related]
15. Pathway of ATP hydrolysis by monomeric and dimeric kinesin. Moyer ML; Gilbert SP; Johnson KA Biochemistry; 1998 Jan; 37(3):800-13. PubMed ID: 9454569 [TBL] [Abstract][Full Text] [Related]
16. Characterization of alpha 2 beta 2 and alpha 2 forms of kinesin. Hackney DD; Levitt JD; Wagner DD Biochem Biophys Res Commun; 1991 Jan; 174(2):810-5. PubMed ID: 1825168 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of carbamoyl phosphate synthetase from Escherichia coli--binding of the ATP molecules used in the reaction and sequestration by the enzyme of the ATP molecule that yields carbamoyl phosphate. Rubio V; Llorente P; Britton HG Eur J Biochem; 1998 Jul; 255(1):262-70. PubMed ID: 9692927 [TBL] [Abstract][Full Text] [Related]
18. The rate-limiting step in microtubule-stimulated ATP hydrolysis by dimeric kinesin head domains occurs while bound to the microtubule. Hackney DD J Biol Chem; 1994 Jun; 269(23):16508-11. PubMed ID: 8206961 [TBL] [Abstract][Full Text] [Related]
19. Identification of the nucleotide-binding site for ATP synthesis and hydrolysis in mitochondrial soluble F1-ATPase. Sakamoto J J Biochem; 1984 Aug; 96(2):475-81. PubMed ID: 6238951 [TBL] [Abstract][Full Text] [Related]
20. Interaction of mant-adenosine nucleotides and magnesium with kinesin. Cheng JQ; Jiang W; Hackney DD Biochemistry; 1998 Apr; 37(15):5288-95. PubMed ID: 9548760 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]