These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 2528548)
1. Generation of IL-1-like activity in response to biomedical polymer implants: a comparison of in vitro and in vivo models. Miller KM; Rose-Caprara V; Anderson JM J Biomed Mater Res; 1989 Sep; 23(9):1007-26. PubMed ID: 2528548 [TBL] [Abstract][Full Text] [Related]
2. In vitro stimulation of fibroblast activity by factors generated from human monocytes activated by biomedical polymers. Miller KM; Anderson JM J Biomed Mater Res; 1989 Aug; 23(8):911-30. PubMed ID: 2528547 [TBL] [Abstract][Full Text] [Related]
3. In vivo induction of macrophage Ia antigen (MHC class II) expression by biomedical polymers in the cage implant system. Petillo O; Peluso G; Ambrosio L; Nicolais L; Kao WJ; Anderson JM J Biomed Mater Res; 1994 May; 28(5):635-46. PubMed ID: 8027104 [TBL] [Abstract][Full Text] [Related]
4. Biocompatibility studies on plasma polymerized interface materials encompassing both hydrophobic and hydrophilic surfaces. Johnson SD; Anderson JM; Marchant RE J Biomed Mater Res; 1992 Jul; 26(7):915-35. PubMed ID: 1607373 [TBL] [Abstract][Full Text] [Related]
5. Plasma protein adsorbed biomedical polymers: activation of human monocytes and induction of interleukin 1. Bonfield TL; Colton E; Anderson JM J Biomed Mater Res; 1989 Jun; 23(6):535-48. PubMed ID: 2786877 [TBL] [Abstract][Full Text] [Related]
6. Human monocyte/macrophage activation and interleukin 1 generation by biomedical polymers. Miller KM; Anderson JM J Biomed Mater Res; 1988 Aug; 22(8):713-31. PubMed ID: 3265135 [TBL] [Abstract][Full Text] [Related]
7. Inflammatory responses to implanted polymeric biomaterials: role of surface-adsorbed immunoglobulin G. Tang L; Lucas AH; Eaton JW J Lab Clin Med; 1993 Sep; 122(3):292-300. PubMed ID: 8409705 [TBL] [Abstract][Full Text] [Related]
8. In vivo biocompatibility studies. I. The cage implant system and a biodegradable hydrogel. Marchant R; Hiltner A; Hamlin C; Rabinovitch A; Slobodkin R; Anderson JM J Biomed Mater Res; 1983 Mar; 17(2):301-25. PubMed ID: 6841371 [TBL] [Abstract][Full Text] [Related]
9. In vivo biodegradability and biocompatibility evaluation of novel alanine ester based polyphosphazenes in a rat model. Sethuraman S; Nair LS; El-Amin S; Farrar R; Nguyen MT; Singh A; Allcock HR; Greish YE; Brown PW; Laurencin CT J Biomed Mater Res A; 2006 Jun; 77(4):679-87. PubMed ID: 16514601 [TBL] [Abstract][Full Text] [Related]
10. A model for the production of large volume exudate from from the implant-tissue interface. Korman NJ; Sudilovsky O; Gibbons DF J Biomed Mater Res; 1982 Jan; 16(1):87-91. PubMed ID: 7056765 [No Abstract] [Full Text] [Related]
11. Cleavage of human interleukin 1: isolation of a peptide fragment from plasma of febrile humans and activated monocytes. Dinarello CA; Clowes GH; Gordon AH; Saravis CA; Wolff SM J Immunol; 1984 Sep; 133(3):1332-8. PubMed ID: 6611371 [TBL] [Abstract][Full Text] [Related]
12. Fibroblast stimulation by monocytes cultured on protein adsorbed biomedical polymers. I. Biomer and polydimethylsiloxane. Bonfield TL; Colton E; Anderson JM J Biomed Mater Res; 1991 Feb; 25(2):165-75. PubMed ID: 2055914 [TBL] [Abstract][Full Text] [Related]
13. Effects of gold on the production of and response to human interleukin-1. Drakes ML; Harth M; Galsworthy SB; McCain GA J Rheumatol; 1987 Dec; 14(6):1123-7. PubMed ID: 3125316 [TBL] [Abstract][Full Text] [Related]
14. Functional versus quantitative comparison of IL-1 beta from monocytes/macrophages on biomedical polymers. Bonfield TL; Anderson JM J Biomed Mater Res; 1993 Sep; 27(9):1195-9. PubMed ID: 8126018 [TBL] [Abstract][Full Text] [Related]
15. [Estimation of biocompatibility of fibers with large mechanical resistance]. Zywicka B Polim Med; 2004; 34(3):3-48. PubMed ID: 15631154 [TBL] [Abstract][Full Text] [Related]
16. Human monocyte/macrophage adhesion and cytokine production on surface-modified poly(tetrafluoroethylene/hexafluoropropylene) polymers with and without protein preadsorption. Yun JK; DeFife K; Colton E; Stack S; Azeez A; Cahalan L; Verhoeven M; Cahalan P; Anderson JM J Biomed Mater Res; 1995 Feb; 29(2):257-68. PubMed ID: 7738074 [TBL] [Abstract][Full Text] [Related]
17. Protein adsorption of biomedical polymers influences activated monocytes to produce fibroblast stimulating factors. Bonfield TL; Colton E; Anderson JM J Biomed Mater Res; 1992 Apr; 26(4):457-65. PubMed ID: 1601899 [TBL] [Abstract][Full Text] [Related]
18. Production of a fibroblast-stimulating factor by Schistosoma mansoni antigen-reactive T cell clones. Lammie PJ; Michael AI; Linette GP; Phillips SM J Immunol; 1986 Feb; 136(3):1100-6. PubMed ID: 3510253 [TBL] [Abstract][Full Text] [Related]
19. The inflammatory responses to silk films in vitro and in vivo. Meinel L; Hofmann S; Karageorgiou V; Kirker-Head C; McCool J; Gronowicz G; Zichner L; Langer R; Vunjak-Novakovic G; Kaplan DL Biomaterials; 2005 Jan; 26(2):147-55. PubMed ID: 15207461 [TBL] [Abstract][Full Text] [Related]
20. Impact of polymer hydrophilicity on biocompatibility: implication for DES polymer design. Hezi-Yamit A; Sullivan C; Wong J; David L; Chen M; Cheng P; Shumaker D; Wilcox JN; Udipi K J Biomed Mater Res A; 2009 Jul; 90(1):133-41. PubMed ID: 18491390 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]