BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25285529)

  • 1. A microfluidic-based electrochemical biochip for label-free DNA hybridization analysis.
    Ben-Yoav H; Dykstra PH; Gordonov T; Bentley WE; Ghodssi R
    J Vis Exp; 2014 Sep; (91):51797. PubMed ID: 25285529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microfluidic-based electrochemical biochip for label-free diffusion-restricted DNA hybridization analysis.
    Ben-Yoav H; Dykstra PH; Bentley WE; Ghodssi R
    Biosens Bioelectron; 2012; 38(1):114-20. PubMed ID: 22651970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic Arrayed Lab-On-A-Chip for Electrochemical Capacitive Detection of DNA Hybridization Events.
    Ben-Yoav H; Dykstra PH; Bentley WE; Ghodssi R
    Methods Mol Biol; 2017; 1572():71-88. PubMed ID: 28299682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A controlled microfluidic electrochemical lab-on-a-chip for label-free diffusion-restricted DNA hybridization analysis.
    Ben-Yoav H; Dykstra PH; Bentley WE; Ghodssi R
    Biosens Bioelectron; 2015 Feb; 64():579-85. PubMed ID: 25310492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic electrochemical transistors integrated in flexible microfluidic systems and used for label-free DNA sensing.
    Lin P; Luo X; Hsing IM; Yan F
    Adv Mater; 2011 Sep; 23(35):4035-40. PubMed ID: 21793055
    [No Abstract]   [Full Text] [Related]  

  • 6. Microfluidic-based electrochemical genosensor coupled to magnetic beads for hybridization detection.
    Berti F; Laschi S; Palchetti I; Rossier JS; Reymond F; Mascini M; Marrazza G
    Talanta; 2009 Jan; 77(3):971-8. PubMed ID: 19064077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impedimetric detection for DNA hybridization within microfluidic biochips.
    Lingerfelt L; Karlinsey J; Landers J; Guiseppi-Elie A
    Methods Mol Biol; 2007; 385():103-20. PubMed ID: 18365707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic chip based ratiometric aptasensor for antibiotic detection in foods using stir bar assisted sorptive extraction and rolling circle amplification.
    He L; Shen Z; Cao Y; Li T; Wu D; Dong Y; Gan N
    Analyst; 2019 Apr; 144(8):2755-2764. PubMed ID: 30869681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-free electrochemical microfluidic biosensors: futuristic point-of-care analytical devices for monitoring diseases.
    Ebrahimi G; Samadi Pakchin P; Shamloo A; Mota A; de la Guardia M; Omidian H; Omidi Y
    Mikrochim Acta; 2022 Jun; 189(7):252. PubMed ID: 35687204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LMP1 gene detection using a capped gold nanowire array surface plasmon resonance sensor in a microfluidic chip.
    Chuang CS; Wu CY; Juan PH; Hou NC; Fan YJ; Wei PK; Sheen HJ
    Analyst; 2019 Dec; 145(1):52-60. PubMed ID: 31764916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of Multiplexed Microfluidic Electrokinetic Concentrators with a Morpholino Microarray via Reversible Surface Bonding for Enhanced DNA Hybridization.
    Martins D; Wei X; Levicky R; Song YA
    Anal Chem; 2016 Apr; 88(7):3539-47. PubMed ID: 26916577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microheater-integrated zinc oxide nanowire microfluidic device for hybridization-based detection of target single-stranded DNA.
    Takahashi H; Yasui T; Kashida H; Makino K; Shinjo K; Liu Q; Shimada T; Rahong S; Kaji N; Asanuma H; Baba Y
    Nanotechnology; 2021 Apr; 32(25):. PubMed ID: 33725670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amplified plasmonic and microfluidic setup for DNA monitoring.
    Guerreiro JRL; Ipatov A; Carvalho J; Toldrà A; Prado M
    Mikrochim Acta; 2021 Sep; 188(10):326. PubMed ID: 34494176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free genosensor based on immobilized DNA hairpins on gold surface.
    Huang C; Stakenborg T; Cheng Y; Colle F; Steylaerts T; Jans K; Van Dorpe P; Lagae L
    Biosens Bioelectron; 2011 Mar; 26(7):3121-6. PubMed ID: 21208795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA hybridization detection in a microfluidic channel using two fluorescently labelled nucleic acid probes.
    Chen L; Lee S; Lee M; Lim C; Choo J; Park JY; Lee S; Joo SW; Lee KH; Choi YW
    Biosens Bioelectron; 2008 Jul; 23(12):1878-82. PubMed ID: 18378133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid microRNA detection using power-free microfluidic chip: coaxial stacking effect enhances the sandwich hybridization.
    Arata H; Komatsu H; Han A; Hosokawa K; Maeda M
    Analyst; 2012 Jul; 137(14):3234-7. PubMed ID: 22614070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasensitive DNA sensor based on gold nanoparticles/reduced graphene oxide/glassy carbon electrode.
    Benvidi A; Firouzabadi AD; Moshtaghiun SM; Mazloum-Ardakani M; Tezerjani MD
    Anal Biochem; 2015 Sep; 484():24-30. PubMed ID: 25988596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microfluidic chip-based fluorescent biosensor for the sensitive and specific detection of label-free single-base mismatch via magnetic beads-based "sandwich" hybridization strategy.
    Wang Z; Fan Y; Chen J; Guo Y; Wu W; He Y; Xu L; Fu F
    Electrophoresis; 2013 Aug; 34(15):2177-84. PubMed ID: 23712850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multilevel Lab on chip platform for DNA analysis.
    Marasso SL; Giuri E; Canavese G; Castagna R; Quaglio M; Ferrante I; Perrone D; Cocuzza M
    Biomed Microdevices; 2011 Feb; 13(1):19-27. PubMed ID: 20827509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An RNA-DNA hybridization assay chip with electrokinetically controlled oil droplet valves for sequential microfluidic operations.
    Weng X; Jiang H; Chon CH; Chen S; Cao H; Li D
    J Biotechnol; 2011 Sep; 155(3):330-7. PubMed ID: 21820019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.