These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 25285599)

  • 1. The use of interval ratios in consonance perception by rats (Rattus norvegicus) and humans (Homo sapiens).
    Crespo-Bojorque P; Toro JM
    J Comp Psychol; 2015 Feb; 129(1):42-51. PubMed ID: 25285599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase locked neural activity in the human brainstem predicts preference for musical consonance.
    Bones O; Hopkins K; Krishnan A; Plack CJ
    Neuropsychologia; 2014 May; 58(100):23-32. PubMed ID: 24690415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consonance and dissonance of musical chords: neural correlates in auditory cortex of monkeys and humans.
    Fishman YI; Volkov IO; Noh MD; Garell PC; Bakken H; Arezzo JC; Howard MA; Steinschneider M
    J Neurophysiol; 2001 Dec; 86(6):2761-88. PubMed ID: 11731536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The basis of musical consonance as revealed by congenital amusia.
    Cousineau M; McDermott JH; Peretz I
    Proc Natl Acad Sci U S A; 2012 Nov; 109(48):19858-63. PubMed ID: 23150582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Processing advantages for consonance: A comparison between rats (Rattus norvegicus) and humans (Homo sapiens).
    Crespo-Bojorque P; Toro JM
    J Comp Psychol; 2016 May; 130(2):97-108. PubMed ID: 27078078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Losing the music: aging affects the perception and subcortical neural representation of musical harmony.
    Bones O; Plack CJ
    J Neurosci; 2015 Mar; 35(9):4071-80. PubMed ID: 25740534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Individual differences reveal the basis of consonance.
    McDermott JH; Lehr AJ; Oxenham AJ
    Curr Biol; 2010 Jun; 20(11):1035-41. PubMed ID: 20493704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The variation of hemodynamics relative to listening to consonance or dissonance during chord progression.
    Daikoku T; Ogura H; Watanabe M
    Neurol Res; 2012 Jul; 34(6):557-63. PubMed ID: 22642826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Black-capped chickadee (Poecile atricapillus) and human (Homo sapiens) chord discrimination.
    Hoeschele M; Cook RG; Guillette LM; Brooks DI; Sturdy CB
    J Comp Psychol; 2012 Feb; 126(1):57-67. PubMed ID: 21942569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consonant chords stimulate higher EEG gamma activity than dissonant chords.
    Park JY; Park H; Kim JI; Park HJ
    Neurosci Lett; 2011 Jan; 488(1):101-5. PubMed ID: 21073923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Japanese monkeys perceive sensory consonance of chords.
    Izumi A
    J Acoust Soc Am; 2000 Dec; 108(6):3073-8. PubMed ID: 11144600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pleasantness of sensory dissonance is mediated by musical style and expertise.
    Popescu T; Neuser MP; Neuwirth M; Bravo F; Mende W; Boneh O; Moss FC; Rohrmeier M
    Sci Rep; 2019 Jan; 9(1):1070. PubMed ID: 30705379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Indifference to dissonance in native Amazonians reveals cultural variation in music perception.
    McDermott JH; Schultz AF; Undurraga EA; Godoy RA
    Nature; 2016 Jul; 535(7613):547-50. PubMed ID: 27409816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Timbre influences chord discrimination in black-capped chickadees (Poecile atricapillus) but not humans (Homo sapiens).
    Hoeschele M; Cook RG; Guillette LM; Hahn AH; Sturdy CB
    J Comp Psychol; 2014 Nov; 128(4):387-401. PubMed ID: 25150964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is consonance attractive to budgerigars? No evidence from a place preference study.
    Wagner B; Bowling DL; Hoeschele M
    Anim Cogn; 2020 Sep; 23(5):973-987. PubMed ID: 32572655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional abnormalities in the cortical processing of sound complexity and musical consonance in schizophrenia: evidence from an evoked potential study.
    Wu KY; Chao CW; Hung CI; Chen WH; Chen YT; Liang SF
    BMC Psychiatry; 2013 May; 13():158. PubMed ID: 23721126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early neural responses underlie advantages for consonance over dissonance.
    Crespo-Bojorque P; Monte-Ordoño J; Toro JM
    Neuropsychologia; 2018 Aug; 117():188-198. PubMed ID: 29885961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient and sustained processing of musical consonance in auditory cortex and the effect of musicality.
    Andermann M; Patterson RD; Rupp A
    J Neurophysiol; 2020 Apr; 123(4):1320-1331. PubMed ID: 32073930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auditory-nerve responses predict pitch attributes related to musical consonance-dissonance for normal and impaired hearing.
    Bidelman GM; Heinz MG
    J Acoust Soc Am; 2011 Sep; 130(3):1488-502. PubMed ID: 21895089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural activity related to discrimination and vocal production of consonant and dissonant musical intervals.
    González-García N; González MA; Rendón PL
    Brain Res; 2016 Jul; 1643():59-69. PubMed ID: 27134038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.