These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

591 related articles for article (PubMed ID: 25286023)

  • 21. Are superhydrophobic surfaces best for icephobicity?
    Jung S; Dorrestijn M; Raps D; Das A; Megaridis CM; Poulikakos D
    Langmuir; 2011 Mar; 27(6):3059-66. PubMed ID: 21319778
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bouncing Regimes of Supercooled Water Droplets Impacting Superhydrophobic Surfaces with Controlled Temperature and Humidity.
    Guo C; Liu L; Yang R; Lu J; Liu S
    Langmuir; 2023 Jul; 39(29):10199-10208. PubMed ID: 37436938
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reinforced Superhydrophobic Coating on Silicone Rubber for Longstanding Anti-Icing Performance in Severe Conditions.
    Emelyanenko AM; Boinovich LB; Bezdomnikov AA; Chulkova EV; Emelyanenko KA
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):24210-24219. PubMed ID: 28657289
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Icephobic behaviors of superhydrophobic amorphous carbon nano-films synthesized from a flame process.
    Xu Y; Zhang G; Li L; Xu C; Lv X; Zhang H; Yao W
    J Colloid Interface Sci; 2019 Sep; 552():613-621. PubMed ID: 31170614
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets.
    Mishchenko L; Hatton B; Bahadur V; Taylor JA; Krupenkin T; Aizenberg J
    ACS Nano; 2010 Dec; 4(12):7699-707. PubMed ID: 21062048
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS).
    Wilson PW; Lu W; Xu H; Kim P; Kreder MJ; Alvarenga J; Aizenberg J
    Phys Chem Chem Phys; 2013 Jan; 15(2):581-5. PubMed ID: 23183624
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Induced detachment of coalescing droplets on superhydrophobic surfaces.
    Farhangi MM; Graham PJ; Choudhury NR; Dolatabadi A
    Langmuir; 2012 Jan; 28(2):1290-303. PubMed ID: 22171956
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of supercooled droplet freezing on surfaces.
    Jung S; Tiwari MK; Doan NV; Poulikakos D
    Nat Commun; 2012 Jan; 3():615. PubMed ID: 22233625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance.
    Kim P; Wong TS; Alvarenga J; Kreder MJ; Adorno-Martinez WE; Aizenberg J
    ACS Nano; 2012 Aug; 6(8):6569-77. PubMed ID: 22680067
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Critical Radius of Supercooled Water Droplets: On the Transition toward Dendritic Freezing.
    Buttersack T; Bauerecker S
    J Phys Chem B; 2016 Jan; 120(3):504-12. PubMed ID: 26727582
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Facile spray-coating process for the fabrication of tunable adhesive superhydrophobic surfaces with heterogeneous chemical compositions used for selective transportation of microdroplets with different volumes.
    Li J; Jing Z; Zha F; Yang Y; Wang Q; Lei Z
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8868-77. PubMed ID: 24807195
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermomechanical Mechanisms of Reducing Ice Adhesion on Superhydrophobic Surfaces.
    Cohen N; Dotan A; Dodiuk H; Kenig S
    Langmuir; 2016 Sep; 32(37):9664-75. PubMed ID: 27578298
    [TBL] [Abstract][Full Text] [Related]  

  • 33. From sticky to slippery droplets: dynamics of contact line depinning on superhydrophobic surfaces.
    Xu W; Choi CH
    Phys Rev Lett; 2012 Jul; 109(2):024504. PubMed ID: 23030167
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Imparting Icephobicity with Substrate Flexibility.
    Vasileiou T; Schutzius TM; Poulikakos D
    Langmuir; 2017 Jul; 33(27):6708-6718. PubMed ID: 28609620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Why superhydrophobic surfaces are not always icephobic.
    Nosonovsky M; Hejazi V
    ACS Nano; 2012 Oct; 6(10):8488-91. PubMed ID: 23009385
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Frost halos from supercooled water droplets.
    Jung S; Tiwari MK; Poulikakos D
    Proc Natl Acad Sci U S A; 2012 Oct; 109(40):16073-8. PubMed ID: 23012410
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nano-micro structured superhydrophobic zinc coating on steel for prevention of corrosion and ice adhesion.
    Brassard JD; Sarkar DK; Perron J; Audibert-Hayet A; Melot D
    J Colloid Interface Sci; 2015 Jun; 447():240-7. PubMed ID: 25529334
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A wetting experiment as a tool to study the physicochemical processes accompanying the contact of hydrophobic and superhydrophobic materials with aqueous media.
    Boinovich L; Emelyanenko A
    Adv Colloid Interface Sci; 2012 Nov; 179-182():133-41. PubMed ID: 22795775
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spontaneous droplet trampolining on rigid superhydrophobic surfaces.
    Schutzius TM; Jung S; Maitra T; Graeber G; Köhme M; Poulikakos D
    Nature; 2015 Nov; 527(7576):82-5. PubMed ID: 26536959
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.
    Mondal B; Mac Giolla Eain M; Xu Q; Egan VM; Punch J; Lyons AM
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23575-88. PubMed ID: 26372672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.