These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 25286146)

  • 1. Pancake bouncing: simulations and theory and experimental verification.
    Moevius L; Liu Y; Wang Z; Yeomans JM
    Langmuir; 2014 Nov; 30(43):13021-32. PubMed ID: 25286146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pancake bouncing on superhydrophobic surfaces.
    Liu Y; Moevius L; Xu X; Qian T; Yeomans JM; Wang Z
    Nat Phys; 2014 Jul; 10(7):515-519. PubMed ID: 28553363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-Area Fabrication of Droplet Pancake Bouncing Surface and Control of Bouncing State.
    Song J; Gao M; Zhao C; Lu Y; Huang L; Liu X; Carmalt CJ; Deng X; Parkin IP
    ACS Nano; 2017 Sep; 11(9):9259-9267. PubMed ID: 28841277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Explosive Pancake Bouncing on Hot Superhydrophilic Surfaces.
    Liu M; Du H; Cheng Y; Zheng H; Jin Y; To S; Wang S; Wang Z
    ACS Appl Mater Interfaces; 2021 May; 13(20):24321-24328. PubMed ID: 33998790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust Superhydrophobic Conical Pillars from Syringe Needle Shape to Straight Conical Pillar Shape for Droplet Pancake Bouncing.
    Song J; Huang L; Zhao C; Wu S; Liu H; Lu Y; Deng X; Carmalt CJ; Parkin IP; Sun Y
    ACS Appl Mater Interfaces; 2019 Dec; 11(48):45345-45353. PubMed ID: 31651139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical and Experimental Studies on the Controllable Pancake Bouncing Behavior of Droplets.
    Wu H; Jiang K; Xu Z; Yu S; Peng X; Zhang Z; Bai H; Liu A; Chai G
    Langmuir; 2019 Dec; 35(52):17000-17008. PubMed ID: 31786923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superhydrophobic porous networks for enhanced droplet shedding.
    Liu Y; Wang Z
    Sci Rep; 2016 Sep; 6():33817. PubMed ID: 27644452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bouncing of an ellipsoidal drop on a superhydrophobic surface.
    Yun S
    Sci Rep; 2017 Dec; 7(1):17699. PubMed ID: 29255271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Droplet Impact on Anisotropic Superhydrophobic Surfaces.
    Guo C; Zhao D; Sun Y; Wang M; Liu Y
    Langmuir; 2018 Mar; 34(11):3533-3540. PubMed ID: 29436832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Symmetry-Breaking Drop Bouncing on Superhydrophobic Surfaces with Continuously Changing Curvatures.
    Choi W; Yun S
    Polymers (Basel); 2021 Aug; 13(17):. PubMed ID: 34502980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat exchange between a bouncing drop and a superhydrophobic substrate.
    Shiri S; Bird JC
    Proc Natl Acad Sci U S A; 2017 Jul; 114(27):6930-6935. PubMed ID: 28630306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of geometrical parameters on rebound of impacting droplets on leaky superhydrophobic meshes.
    Kumar A; Tripathy A; Nam Y; Lee C; Sen P
    Soft Matter; 2018 Feb; 14(9):1571-1580. PubMed ID: 29355280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Droplet impact on superhydrophobic surfaces fully decorated with cylindrical macrotextures.
    Abolghasemibizaki M; Mohammadi R
    J Colloid Interface Sci; 2018 Jan; 509():422-431. PubMed ID: 28923739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid Bouncing of High-Speed Drops on Hydrophobic Surfaces with Microcavities.
    Zhang R; Hao P; He F
    Langmuir; 2016 Oct; 32(39):9967-9974. PubMed ID: 27599116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pancake Jumping of Sessile Droplets.
    Qian C; Zhou F; Wang T; Li Q; Hu D; Chen X; Wang Z
    Adv Sci (Weinh); 2022 Mar; 9(7):e2103834. PubMed ID: 35032105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling the residence time of a bouncing drop with asymmetric shaping.
    Yun S
    Soft Matter; 2018 Jun; 14(24):4946-4951. PubMed ID: 29881860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supercooled water drops impacting superhydrophobic textures.
    Maitra T; Antonini C; Tiwari MK; Mularczyk A; Imeri Z; Schoch P; Poulikakos D
    Langmuir; 2014 Sep; 30(36):10855-61. PubMed ID: 25157476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drop Impact on Oblique Superhydrophobic Surfaces with Two-Tier Roughness.
    Zhang R; Hao P; He F
    Langmuir; 2017 Apr; 33(14):3556-3567. PubMed ID: 28326784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reducing the contact time of a bouncing drop.
    Bird JC; Dhiman R; Kwon HM; Varanasi KK
    Nature; 2013 Nov; 503(7476):385-8. PubMed ID: 24256803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.