These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 25286146)

  • 41. Influence of Microstructure Topography on the Oblique Impact Dynamics of Drops on Superhydrophobic Surfaces.
    Aboud DGK; Kietzig AM
    Langmuir; 2021 Apr; 37(15):4678-4689. PubMed ID: 33797264
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Regulation of Droplet Rebound Behavior with Contact Time Control on a Flexible and Superhydrophobic Film.
    Ding S; Dai Z; Chen G; Lei M; Song Q; Gao Y; Zhou Y; Zhou B
    Langmuir; 2022 Mar; 38(9):2942-2953. PubMed ID: 35200028
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Shedding of Water Drops from a Surface under Icing Conditions.
    Mandal DK; Criscione A; Tropea C; Amirfazli A
    Langmuir; 2015 Sep; 31(34):9340-7. PubMed ID: 26261936
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tensiometric Characterization of Superhydrophobic Surfaces As Compared to the Sessile and Bouncing Drop Methods.
    Hisler V; Jendoubi H; Hairaye C; Vonna L; Le Houérou V; Mermet F; Nardin M; Haidara H
    Langmuir; 2016 Aug; 32(31):7765-73. PubMed ID: 27408983
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Internal rupture and rapid bouncing of impacting drops induced by submillimeter-scale textures.
    Zhang R; Zhang X; Hao P; He F
    Phys Rev E; 2017 Jun; 95(6-1):063104. PubMed ID: 28709343
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Variation of the Contact Time of Droplets Bouncing on Cylindrical Ridges with Ridge Size.
    Andrew M; Liu Y; Yeomans JM
    Langmuir; 2017 Aug; 33(30):7583-7587. PubMed ID: 28692284
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Theory of non-equilibrium force measurements involving deformable drops and bubbles.
    Chan DY; Klaseboer E; Manica R
    Adv Colloid Interface Sci; 2011 Jul; 165(2):70-90. PubMed ID: 21257141
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reducing the Bounce Height during Truncated Spherical Drop Impact on a Solid Surface.
    Yun S
    Langmuir; 2018 Jun; 34(25):7465-7471. PubMed ID: 29896966
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Numerical and analytical study of the impinging and bouncing phenomena of droplets on superhydrophobic surfaces with microtextured structures.
    Quan Y; Zhang LZ
    Langmuir; 2014 Oct; 30(39):11640-9. PubMed ID: 25203603
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Jumps, somersaults, and symmetry breaking in Leidenfrost drops.
    Chen S; Bertola V
    Phys Rev E; 2016 Aug; 94(2-1):021102. PubMed ID: 27627234
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Extreme resistance of superhydrophobic surfaces to impalement: reversible electrowetting related to the impacting/bouncing drop test.
    Brunet P; Lapierre F; Thomy V; Coffinier Y; Boukherroub R
    Langmuir; 2008 Oct; 24(19):11203-8. PubMed ID: 18729486
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Towards the shortest possible contact time: Droplet impact on cylindrical superhydrophobic surfaces structured with macro-scale features.
    Abolghasemibizaki M; McMasters RL; Mohammadi R
    J Colloid Interface Sci; 2018 Jul; 521():17-23. PubMed ID: 29547785
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Water impacting on superhydrophobic macrotextures.
    Gauthier A; Symon S; Clanet C; Quéré D
    Nat Commun; 2015 Aug; 6():8001. PubMed ID: 26259509
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-precision drop shape analysis on inclining flat surfaces: introduction and comparison of this special method with commercial contact angle analysis.
    Schmitt M; Heib F
    J Chem Phys; 2013 Oct; 139(13):134201. PubMed ID: 24116561
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Factors affecting the spontaneous motion of condensate drops on superhydrophobic copper surfaces.
    Feng J; Qin Z; Yao S
    Langmuir; 2012 Apr; 28(14):6067-75. PubMed ID: 22424422
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Contact angles of drops on curved superhydrophobic surfaces.
    Viswanadam G; Chase GG
    J Colloid Interface Sci; 2012 Feb; 367(1):472-7. PubMed ID: 22129634
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Waterbowls: Reducing Impacting Droplet Interactions by Momentum Redirection.
    Girard HL; Soto D; Varanasi KK
    ACS Nano; 2019 Jul; 13(7):7729-7735. PubMed ID: 31243952
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaporation of pure liquid sessile and spherical suspended drops: a review.
    Erbil HY
    Adv Colloid Interface Sci; 2012 Jan; 170(1-2):67-86. PubMed ID: 22277832
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Preston DJ; Enright R; Wang EN
    ACS Nano; 2013 Dec; 7(12):11043-54. PubMed ID: 24261667
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Verification of icephobic/anti-icing properties of a superhydrophobic surface.
    Wang Y; Xue J; Wang Q; Chen Q; Ding J
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3370-81. PubMed ID: 23537106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.