These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 25286334)

  • 21. Combined multiphoton imaging-pixel analysis for semiquantitation of skin penetration of gold nanoparticles.
    Labouta HI; Kraus T; El-Khordagui LK; Schneider M
    Int J Pharm; 2011 Jul; 413(1-2):279-82. PubMed ID: 21515347
    [TBL] [Abstract][Full Text] [Related]  

  • 22. γ-PGA-coated mesoporous silica nanoparticles with covalently attached prodrugs for enhanced cellular uptake and intracellular GSH-responsive release.
    Du X; Xiong L; Dai S; Qiao SZ
    Adv Healthc Mater; 2015 Apr; 4(5):771-81. PubMed ID: 25582379
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multifunctional silica nanoparticles for targeted delivery of hydrophobic imaging and therapeutic agents.
    Liu Y; Mi Y; Zhao J; Feng SS
    Int J Pharm; 2011 Dec; 421(2):370-8. PubMed ID: 22001536
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Passive and active target delivery of drugs to ischemic myocardium.
    Galagudza MM; Korolev DV; Sonin DL; Alexandrov IV; Minasian SM; Postnov VN; Kirpicheva EB; Papayan GV; Uskov IS
    Bull Exp Biol Med; 2011 Nov; 152(1):105-7. PubMed ID: 22803053
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Limitations and Opportunities in Topical Drug Delivery: Interaction Between Silica Nanoparticles and Skin Barrier.
    Arriagada F; Morales J
    Curr Pharm Des; 2019; 25(4):455-466. PubMed ID: 30947656
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of nanoparticles in percutaneous delivery of active ingredients in cosmetic preparations.
    Khezri K; Saeedi M; Maleki Dizaj S
    Biomed Pharmacother; 2018 Oct; 106():1499-1505. PubMed ID: 30119225
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Skin interaction, permeation, and toxicity of silica nanoparticles: Challenges and recent therapeutic and cosmetic advances.
    Morais RP; Hochheim S; de Oliveira CC; Riegel-Vidotti IC; Marino CEB
    Int J Pharm; 2022 Feb; 614():121439. PubMed ID: 34990742
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoengineered silica: Properties, applications and toxicity.
    Mebert AM; Baglole CJ; Desimone MF; Maysinger D
    Food Chem Toxicol; 2017 Nov; 109(Pt 1):753-770. PubMed ID: 28578101
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ceramic nanoparticles: Recompense, cellular uptake and toxicity concerns.
    Singh D; Singh S; Sahu J; Srivastava S; Singh MR
    Artif Cells Nanomed Biotechnol; 2016; 44(1):401-9. PubMed ID: 25229834
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanoparticle dermal absorption and toxicity: a review of the literature.
    Crosera M; Bovenzi M; Maina G; Adami G; Zanette C; Florio C; Filon Larese F
    Int Arch Occup Environ Health; 2009 Oct; 82(9):1043-55. PubMed ID: 19705142
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioconjugated Plasmonic Nanoparticles for Enhanced Skin Penetration.
    Alba-Molina D; Giner-Casares JJ; Cano M
    Top Curr Chem (Cham); 2019 Dec; 378(1):8. PubMed ID: 31840194
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mesoporous silica nanoparticles for intracellular controlled drug delivery.
    Vivero-Escoto JL; Slowing II; Trewyn BG; Lin VS
    Small; 2010 Sep; 6(18):1952-67. PubMed ID: 20690133
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoparticles in dermatology.
    Papakostas D; Rancan F; Sterry W; Blume-Peytavi U; Vogt A
    Arch Dermatol Res; 2011 Oct; 303(8):533-50. PubMed ID: 21837474
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Transdermal penetration and biodistribution of nanomaterials and their acute toxicity in vivo].
    Tsunoda S
    Yakugaku Zasshi; 2011 Feb; 131(2):203-7. PubMed ID: 21297362
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Silica-based nanoparticles for biomedical applications.
    Bitar A; Ahmad NM; Fessi H; Elaissari A
    Drug Discov Today; 2012 Oct; 17(19-20):1147-54. PubMed ID: 22772028
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potential use of nanoparticles for transcutaneous vaccine delivery: effect of particle size and charge.
    Kohli AK; Alpar HO
    Int J Pharm; 2004 May; 275(1-2):13-7. PubMed ID: 15081134
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Size and surface charge significantly influence the toxicity of silica and dendritic nanoparticles.
    Greish K; Thiagarajan G; Herd H; Price R; Bauer H; Hubbard D; Burckle A; Sadekar S; Yu T; Anwar A; Ray A; Ghandehari H
    Nanotoxicology; 2012 Nov; 6(7):713-23. PubMed ID: 21793770
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A facile construction strategy of stable lipid nanoparticles for drug delivery using a hydrogel-thickened microemulsion system.
    Chen H; Xiao L; Du D; Mou D; Xu H; Yang X
    Nanotechnology; 2010 Jan; 21(1):015101. PubMed ID: 19946154
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The toxicological mode of action and the safety of synthetic amorphous silica-a nanostructured material.
    Fruijtier-Pölloth C
    Toxicology; 2012 Apr; 294(2-3):61-79. PubMed ID: 22349641
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecule-scale controlled-release system based on light-responsive silica nanoparticles.
    Wu C; Chen C; Lai J; Chen J; Mu X; Zheng J; Zhao Y
    Chem Commun (Camb); 2008 Jun; (23):2662-4. PubMed ID: 18535700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.