These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 2528697)

  • 1. Functional replacement of a protein-induced bend in a DNA recombination site.
    Goodman SD; Nash HA
    Nature; 1989 Sep; 341(6239):251-4. PubMed ID: 2528697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phasing of protein-induced DNA bends in a recombination complex.
    Snyder UK; Thompson JF; Landy A
    Nature; 1989 Sep; 341(6239):255-7. PubMed ID: 2528698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA bending in the Sin recombination synapse: functional replacement of HU by IHF.
    Rowland SJ; Boocock MR; Stark WM
    Mol Microbiol; 2006 Mar; 59(6):1730-43. PubMed ID: 16553879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Function of IHF in lambda DNA packaging. II. Effects of mutations altering the IHF binding site and the intrinsic bend in cosB on lambda development.
    Xin W; Cai ZH; Feiss M
    J Mol Biol; 1993 Mar; 230(2):505-15. PubMed ID: 8464062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacteriophage lambda gpNu1 and Escherichia coli IHF proteins cooperatively bind and bend viral DNA: implications for the assembly of a genome-packaging motor.
    Ortega ME; Catalano CE
    Biochemistry; 2006 Apr; 45(16):5180-9. PubMed ID: 16618107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct atomic force microscopy visualization of integration host factor-induced DNA bending structure of the promoter regulatory region on the Pseudomonas TOL plasmid.
    Seong GH; Kobatake E; Miura K; Nakazawa A; Aizawa M
    Biochem Biophys Res Commun; 2002 Feb; 291(2):361-6. PubMed ID: 11846413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Function of IHF in lambda DNA packaging. I. Identification of the strong binding site for integration host factor and the locus for intrinsic bending in cosB.
    Xin W; Feiss M
    J Mol Biol; 1993 Mar; 230(2):492-504. PubMed ID: 8385227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the interaction between the lambda intasome and attB.
    Patsey RL; Bruist MF
    J Mol Biol; 1995 Sep; 252(1):47-58. PubMed ID: 7666432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-specific recombination in eukaryotic cells mediated by mutant lambda integrases: implications for synaptic complex formation and the reactivity of episomal DNA segments.
    Christ N; Corona T; Dröge P
    J Mol Biol; 2002 May; 319(2):305-14. PubMed ID: 12051908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-specific recombinases: changing partners and doing the twist.
    Sadowski P
    J Bacteriol; 1986 Feb; 165(2):341-7. PubMed ID: 3003022
    [No Abstract]   [Full Text] [Related]  

  • 11. Structural distortions induced by integration host factor (IHF) at the H' site of phage lambda probed by (+)-CC-1065, pluramycin, and KMnO4 and by DNA cyclization studies.
    Sun D; Hurley LH; Harshey RM
    Biochemistry; 1996 Aug; 35(33):10815-27. PubMed ID: 8718873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single base-pair precision and structural rigidity in a small IHF-induced DNA loop.
    Nunes-Düby SE; Smith-Mungo LI; Landy A
    J Mol Biol; 1995 Oct; 253(2):228-42. PubMed ID: 7563085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA looping generated by DNA bending protein IHF and the two domains of lambda integrase.
    Moitoso de Vargas L; Kim S; Landy A
    Science; 1989 Jun; 244(4911):1457-61. PubMed ID: 2544029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of DNA bending in Flp-mediated site-specific recombination.
    Luetke KH; Sadowski PD
    J Mol Biol; 1995 Aug; 251(4):493-506. PubMed ID: 7658468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping the functional domains of bacteriophage lambda integrase protein.
    Han YW; Gumport RI; Gardner JF
    J Mol Biol; 1994 Jan; 235(3):908-25. PubMed ID: 8289327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homology-dependent interactions in phage lambda site-specific recombination.
    Kitts PA; Nash HA
    Nature; 1987 Sep 24-30; 329(6137):346-8. PubMed ID: 2957599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonamer binding protein induces a bend in the immunoglobulin gene recombinational signal sequence.
    Andrews R; Halligan NL; Halligan BD
    Biochem Biophys Res Commun; 1993 May; 193(1):139-45. PubMed ID: 8503900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutual stabilisation of bacteriophage Mu repressor and histone-like proteins in a nucleoprotein structure.
    Betermier M; Rousseau P; Alazard R; Chandler M
    J Mol Biol; 1995 Jun; 249(2):332-41. PubMed ID: 7783197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacteriophage P22 Abc2 protein binds to RecC increases the 5' strand nicking activity of RecBCD and together with lambda bet, promotes Chi-independent recombination.
    Murphy KC
    J Mol Biol; 2000 Feb; 296(2):385-401. PubMed ID: 10669596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordinated control of XerC and XerD catalytic activities during Holliday junction resolution.
    Arciszewska LK; Baker RA; Hallet B; Sherratt DJ
    J Mol Biol; 2000 Jun; 299(2):391-403. PubMed ID: 10860747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.