BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 25287188)

  • 21. Predicting Cu and Zn sorption capacity of biochar from feedstock C/N ratio and pyrolysis temperature.
    Rodríguez-Vila A; Selwyn-Smith H; Enunwa L; Smail I; Covelo EF; Sizmur T
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7730-7739. PubMed ID: 29288302
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Competitive adsorption and selectivity sequence of heavy metals by chicken bone-derived biochar: Batch and column experiment.
    Park JH; Cho JS; Ok YS; Kim SH; Kang SW; Choi IW; Heo JS; DeLaune RD; Seo DC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(11):1194-204. PubMed ID: 26191994
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Magnetic biochar enhanced copper immobilization in agricultural lands: Insights from adsorption precipitation and redox.
    Ma W; Han R; Zhang W; Zhang H; Chen L; Zhu L
    J Environ Manage; 2024 Feb; 352():120058. PubMed ID: 38219671
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioleaching of heavy metal from woody biochar using Acidithiobacillus ferrooxidans and activation for adsorption.
    Wang B; Li C; Liang H
    Bioresour Technol; 2013 Oct; 146():803-806. PubMed ID: 23978608
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unlocking the potential of biochar: an iron-phosphorus-based composite modified adsorbent for adsorption of Pb(II) and Cd(II) in aqueous environments and response surface optimization of adsorption conditions.
    Li X; Chi Y; Ma F; Wang X; Du R; Wang Z; Dang X; Zhao C; Zhang Y; He S; Wang Y; Zhu T
    Environ Sci Pollut Res Int; 2024 May; 31(24):35688-35704. PubMed ID: 38740681
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient Remediation of Cadmium- and Lead-Contaminated Water by Using Fe-Modified Date Palm Waste Biochar-Based Adsorbents.
    Alghamdi AG; Alasmary Z
    Int J Environ Res Public Health; 2023 Jan; 20(1):. PubMed ID: 36613124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adsorption characteristics and mechanisms of Cd
    Chen F; Sun Y; Liang C; Yang T; Mi S; Dai Y; Yu M; Yao Q
    Sci Rep; 2022 Oct; 12(1):17714. PubMed ID: 36271027
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Removal of ammonia nitrogen, nitrate, and phosphate from aqueous solution using biochar derived from Thalia dealbata Fraser: effect of carbonization temperature.
    Zhao Y; Yang H; Xia S; Wu Z
    Environ Sci Pollut Res Int; 2022 Aug; 29(38):57773-57789. PubMed ID: 35352229
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An efficient, economical, and easy mass production biochar supported zero-valent iron composite derived from direct-reduction natural goethite for Cu(II) and Cr(VI) remove.
    Cai M; Zeng J; Chen Y; He P; Chen F; Wang X; Liang J; Gu C; Huang D; Zhang K; Gan M; Zhu J
    Chemosphere; 2021 Dec; 285():131539. PubMed ID: 34329142
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microwave biochar produced with activated carbon catalyst: Characterization and adsorption of heavy metals.
    Qi G; Pan Z; Zhang X; Chang S; Wang H; Wang M; Xiang W; Gao B
    Environ Res; 2023 Jan; 216(Pt 4):114732. PubMed ID: 36402180
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low-cost magnetic herbal biochar: characterization and application for antibiotic removal.
    Kong X; Liu Y; Pi J; Li W; Liao Q; Shang J
    Environ Sci Pollut Res Int; 2017 Mar; 24(7):6679-6687. PubMed ID: 28083746
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Characteristics and Mechanism of Copper Adsorption from Aqueous Solutions on Biochar Produced from Sawdust and Apple Branch].
    Wang TT; Ma JB; Qu D; Zhang XY; Zheng JY; Zhang XC
    Huan Jing Ke Xue; 2017 May; 38(5):2161-2171. PubMed ID: 29965125
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid and efficient removal of multiple heavy metals from diverse types of water using magnetic biochars derived from antibiotic fermentation residue.
    Mu J; Chen Y; Wu X; Chen Q; Zhang M
    J Environ Manage; 2024 Feb; 351():119685. PubMed ID: 38042070
    [TBL] [Abstract][Full Text] [Related]  

  • 34. One-step synthesis of a core-shell structured biochar using algae (Chlorella) powder and ferric sulfate for immobilizing Hg(II).
    Ge Y; Zhu S; Wang K; Liu F; Zhang S; Wang R; Ho SH; Chang JS
    J Hazard Mater; 2024 May; 469():133991. PubMed ID: 38492405
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Properties and adsorption mechanism of magnetic biochar modified with molybdenum disulfide for cadmium in aqueous solution.
    Khan ZH; Gao M; Qiu W; Song Z
    Chemosphere; 2020 Sep; 255():126995. PubMed ID: 32416394
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanisms for the removal of Cd(II) and Cu(II) from aqueous solution and mine water by biochars derived from agricultural wastes.
    Bandara T; Xu J; Potter ID; Franks A; Chathurika JBAJ; Tang C
    Chemosphere; 2020 Sep; 254():126745. PubMed ID: 32315813
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Performance of a novel iron infused biochar developed from
    Verma L; Azad A; Singh J
    Int J Phytoremediation; 2022; 24(9):919-932. PubMed ID: 34623940
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adsorption of trace heavy metals through organic compounds enriched biochar using isotherm adsorption and kinetic models.
    Dad FP; Khan WU; Sharif F; Nizami AS
    Environ Res; 2024 Jan; 241():117702. PubMed ID: 37980985
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanisms for cadmium adsorption by magnetic biochar composites in an aqueous solution.
    Khan ZH; Gao M; Qiu W; Islam MS; Song Z
    Chemosphere; 2020 May; 246():125701. PubMed ID: 31891847
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorption of copper(II) and lead(II) from seawater using hydrothermal biochar derived from Enteromorpha.
    Yang W; Wang Z; Song S; Han J; Chen H; Wang X; Sun R; Cheng J
    Mar Pollut Bull; 2019 Dec; 149():110586. PubMed ID: 31550572
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.