BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 25287199)

  • 1. Imaging callose at plasmodesmata using aniline blue: quantitative confocal microscopy.
    Zavaliev R; Epel BL
    Methods Mol Biol; 2015; 1217():105-19. PubMed ID: 25287199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunofluorescence detection of callose deposition around plasmodesmata sites.
    Pendle A; Benitez-Alfonso Y
    Methods Mol Biol; 2015; 1217():95-104. PubMed ID: 25287198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vivo Aniline Blue Staining and Semiautomated Quantification of Callose Deposition at Plasmodesmata.
    Huang C; Mutterer J; Heinlein M
    Methods Mol Biol; 2022; 2457():151-165. PubMed ID: 35349138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization of fluorescently tagged protein to plasmodesmata by correlative light and electron microscopy.
    Modla S; Caplan JL; Czymmek KJ; Lee JY
    Methods Mol Biol; 2015; 1217():121-33. PubMed ID: 25287200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drop-ANd-See: a simple, real-time, and noninvasive technique for assaying plasmodesmal permeability.
    Cui W; Wang X; Lee JY
    Methods Mol Biol; 2015; 1217():149-56. PubMed ID: 25287202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A plasmodesmata-associated beta-1,3-glucanase in Arabidopsis.
    Levy A; Erlanger M; Rosenthal M; Epel BL
    Plant J; 2007 Feb; 49(4):669-82. PubMed ID: 17270015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging plasmodesmata with high-resolution scanning electron microscopy.
    Barton DA; Overall RL
    Methods Mol Biol; 2015; 1217():55-65. PubMed ID: 25287195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparative methods for imaging plasmodesmata at super-resolution.
    Bell K; Oparka K
    Methods Mol Biol; 2015; 1217():67-79. PubMed ID: 25287196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Staining and automated image quantification of callose in Arabidopsis cotyledons and leaves.
    Mason KN; Ekanayake G; Heese A
    Methods Cell Biol; 2020; 160():181-199. PubMed ID: 32896315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of plasmodesmata from Arabidopsis suspension culture cells.
    Grison MS; Fernandez-Calvino L; Mongrand S; Bayer EM
    Methods Mol Biol; 2015; 1217():83-93. PubMed ID: 25287197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing Methods for Detection and Quantification of Plasmodesmal Callose in
    Sankoh AF; Adjei J; Roberts DM; Burch-Smith TM
    Mol Plant Microbe Interact; 2024 May; 37(5):427-431. PubMed ID: 38377039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of plant cell coupling with live-cell microscopy.
    Liesche J; Schulz A
    Methods Mol Biol; 2015; 1217():137-48. PubMed ID: 25287201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoassimilation, assimilate translocation and plasmodesmal biogenesis in the source leaves of Arabidopsis thaliana grown under an increased atmospheric CO2 concentration.
    Duan Z; Homma A; Kobayashi M; Nagata N; Kaneko Y; Fujiki Y; Nishida I
    Plant Cell Physiol; 2014 Feb; 55(2):358-69. PubMed ID: 24406629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative proteomic profiling of the choline transporter-like1 (CHER1) mutant provides insights into plasmodesmata composition of fully developed Arabidopsis thaliana leaves.
    Kraner ME; Müller C; Sonnewald U
    Plant J; 2017 Nov; 92(4):696-709. PubMed ID: 28865150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging models on the regulation of intercellular transport by plasmodesmata-associated callose.
    Amsbury S; Kirk P; Benitez-Alfonso Y
    J Exp Bot; 2017 Dec; 69(1):105-115. PubMed ID: 29040641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing plasmodesmata function with biochemical inhibitors.
    White RG
    Methods Mol Biol; 2015; 1217():199-227. PubMed ID: 25287206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Callose content in cell walls of leaf epidermis and mesophyll in Alisma plantago-aquatica L. plants growing in different conditions of water supply].
    Ovruts'ka II
    Tsitol Genet; 2014; 48(2):28-36. PubMed ID: 24818508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subcellular dynamics and role of Arabidopsis β-1,3-glucanases in cell-to-cell movement of tobamoviruses.
    Zavaliev R; Levy A; Gera A; Epel BL
    Mol Plant Microbe Interact; 2013 Sep; 26(9):1016-30. PubMed ID: 23656331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunofluorescence Detection of Callose in Plant Tissue Sections.
    Amsbury S; Benitez-Alfonso Y
    Methods Mol Biol; 2022; 2457():167-176. PubMed ID: 35349139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A developmental framework for complex plasmodesmata formation revealed by large-scale imaging of the Arabidopsis leaf epidermis.
    Fitzgibbon J; Beck M; Zhou J; Faulkner C; Robatzek S; Oparka K
    Plant Cell; 2013 Jan; 25(1):57-70. PubMed ID: 23371949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.