These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 25287644)

  • 1. Neural correlates of sensory prediction errors in monkeys: evidence for internal models of voluntary self-motion in the cerebellum.
    Cullen KE; Brooks JX
    Cerebellum; 2015 Feb; 14(1):31-4. PubMed ID: 25287644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The primate cerebellum selectively encodes unexpected self-motion.
    Brooks JX; Cullen KE
    Curr Biol; 2013 Jun; 23(11):947-55. PubMed ID: 23684973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early vestibular processing does not discriminate active from passive self-motion if there is a discrepancy between predicted and actual proprioceptive feedback.
    Brooks JX; Cullen KE
    J Neurophysiol; 2014 Jun; 111(12):2465-78. PubMed ID: 24671531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictive Sensing: The Role of Motor Signals in Sensory Processing.
    Brooks JX; Cullen KE
    Biol Psychiatry Cogn Neurosci Neuroimaging; 2019 Sep; 4(9):842-850. PubMed ID: 31401034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Internal models of self-motion: computations that suppress vestibular reafference in early vestibular processing.
    Cullen KE; Brooks JX; Jamali M; Carriot J; Massot C
    Exp Brain Res; 2011 May; 210(3-4):377-88. PubMed ID: 21286693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How actions alter sensory processing: reafference in the vestibular system.
    Cullen KE; Brooks JX; Sadeghi SG
    Ann N Y Acad Sci; 2009 May; 1164():29-36. PubMed ID: 19645877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A unified internal model theory to resolve the paradox of active versus passive self-motion sensation.
    Laurens J; Angelaki DE
    Elife; 2017 Oct; 6():. PubMed ID: 29043978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catching falling objects: the role of the cerebellum in processing sensory-motor errors that may influence updating of feedforward commands. An fMRI study.
    Fautrelle L; Pichat C; Ricolfi F; Peyrin C; Bonnetblanc F
    Neuroscience; 2011 Sep; 190():135-44. PubMed ID: 21718759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebellum, Predictions and Errors.
    Popa LS; Ebner TJ
    Front Cell Neurosci; 2018; 12():524. PubMed ID: 30697149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perceiving your hand moving: BOLD suppression in sensory cortices and the role of the cerebellum in the detection of feedback delays.
    Arikan BE; van Kemenade BM; Podranski K; Steinsträter O; Straube B; Kircher T
    J Vis; 2019 Dec; 19(14):4. PubMed ID: 31826249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brainstem processing of vestibular sensory exafference: implications for motion sickness etiology.
    Oman CM; Cullen KE
    Exp Brain Res; 2014 Aug; 232(8):2483-92. PubMed ID: 24838552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimodal integration of self-motion cues in the vestibular system: active versus passive translations.
    Carriot J; Brooks JX; Cullen KE
    J Neurosci; 2013 Dec; 33(50):19555-66. PubMed ID: 24336720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissociating self-generated from passively applied head motion: neural mechanisms in the vestibular nuclei.
    Roy JE; Cullen KE
    J Neurosci; 2004 Mar; 24(9):2102-11. PubMed ID: 14999061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Internal models of self-motion: neural computations by the vestibular cerebellum.
    Cullen KE
    Trends Neurosci; 2023 Nov; 46(11):986-1002. PubMed ID: 37739815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Errors of Our Ways: Understanding Error Representations in Cerebellar-Dependent Motor Learning.
    Popa LS; Streng ML; Hewitt AL; Ebner TJ
    Cerebellum; 2016 Apr; 15(2):93-103. PubMed ID: 26112422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensory signals during active versus passive movement.
    Cullen KE
    Curr Opin Neurobiol; 2004 Dec; 14(6):698-706. PubMed ID: 15582371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brief Temporal Perturbations in Somatosensory Reafference Disrupt Perceptual and Neural Attenuation and Increase Supplementary Motor Area-Cerebellar Connectivity.
    Kilteni K; Houborg C; Ehrsson HH
    J Neurosci; 2023 Jul; 43(28):5251-5263. PubMed ID: 37339879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebellar Prediction of the Dynamic Sensory Consequences of Gravity.
    Mackrous I; Carriot J; Jamali M; Cullen KE
    Curr Biol; 2019 Aug; 29(16):2698-2710.e4. PubMed ID: 31378613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct representations of body and head motion are dynamically encoded by Purkinje cell populations in the macaque cerebellum.
    Zobeiri OA; Cullen KE
    Elife; 2022 Apr; 11():. PubMed ID: 35467528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning to expect the unexpected: rapid updating in primate cerebellum during voluntary self-motion.
    Brooks JX; Carriot J; Cullen KE
    Nat Neurosci; 2015 Sep; 18(9):1310-7. PubMed ID: 26237366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.