These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 25287868)

  • 1. A multi-step transmission electron microscopy sample preparation technique for cracked, heavily damaged, brittle materials.
    Weiss Brennan CV; Walck SD; Swab JJ
    Microsc Microanal; 2014 Dec; 20(6):1646-53. PubMed ID: 25287868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applications of the FIB lift-out technique for TEM specimen preparation.
    Giannuzzi LA; Drown JL; Brown SR; Irwin RB; Stevie FA
    Microsc Res Tech; 1998 May; 41(4):285-90. PubMed ID: 9633946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Efficient and Cost-Effective Method for Preparing Transmission Electron Microscopy Samples from Powders.
    Wen H; Lin Y; Seidman DN; Schoenung JM; van Rooyen IJ; Lavernia EJ
    Microsc Microanal; 2015 Oct; 21(5):1184-94. PubMed ID: 26350148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of cross-sectional TEM samples for low-angle ion milling.
    McCaffrey JP; Barna A
    Microsc Res Tech; 1997 Mar; 36(5):362-7. PubMed ID: 9140935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in-situ method for protecting internal cracks/pores from ion beam damage and reducing curtaining for TEM sample preparation using FIB.
    Zhong XL; Haigh SJ; Zhou X; Withers PJ
    Ultramicroscopy; 2020 Dec; 219():113135. PubMed ID: 33129062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A technique for the preparation of cross-sectional TEM samples of ZnSe/GaAs heterostructures which eliminates process-induced defects.
    Yu JE; Jones KS; Park RM
    J Electron Microsc Tech; 1991 Jul; 18(3):315-24. PubMed ID: 1880604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmission electron microscopy specimen preparation method for multiphase porous functional ceramics.
    Zhang W; Kuhn LT; Jørgensen PS; Thydén K; Bentzen JJ; Abdellahi E; Sudireddy BR; Chen M; Bowen JR
    Microsc Microanal; 2013 Apr; 19(2):501-5. PubMed ID: 23407041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized Ar(+)-ion milling procedure for TEM cross-section sample preparation.
    Dieterle L; Butz B; Müller E
    Ultramicroscopy; 2011 Nov; 111(11):1636-44. PubMed ID: 21979559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-specific specimen preparation by focused ion beam milling for transmission electron microscopy of metal matrix composites.
    Gasser P; Klotz UE; Khalid FA; Beffort O
    Microsc Microanal; 2004 Apr; 10(2):311-6. PubMed ID: 15306057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A reliable approach to prepare brittle semiconducting materials for cross-sectional transmission electron microscopy.
    Dycus JH; Lebeau JM
    J Microsc; 2017 Dec; 268(3):225-229. PubMed ID: 28686283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The focused ion beam fold-out: sample preparation method for transmission electron microscopy.
    Floresca HC; Jeon J; Wang JG; Kim MJ
    Microsc Microanal; 2009 Dec; 15(6):558-63. PubMed ID: 19804654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thin foil preparation of metal particles in brittle ceramic matrices.
    Yang CW; Williams DB; Goldstein JI
    Microsc Res Tech; 1996 Nov; 35(4):334-9. PubMed ID: 8987027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized pre-thinning procedures of ion-beam thinning for TEM sample preparation by magnetorheological polishing.
    Luo H; Yin S; Zhang G; Liu C; Tang Q; Guo M
    Ultramicroscopy; 2017 Oct; 181():165-172. PubMed ID: 28578300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved sample preparation for cross-sectional transmission electron microscopy of layered structures using rocking-angle ion-milling techniques.
    Lee JS; Jeong YW; Kim ST
    Microsc Res Tech; 1996 Apr; 33(6):490-5. PubMed ID: 8800754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TEM sample preparation by femtosecond laser machining and ion milling for high-rate TEM straining experiments.
    Voisin T; Grapes MD; Zhang Y; Lorenzo N; Ligda J; Schuster B; Weihs TP
    Ultramicroscopy; 2017 Apr; 175():1-8. PubMed ID: 28110178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sample preparation for atomic-resolution STEM at low voltages by FIB.
    Schaffer M; Schaffer B; Ramasse Q
    Ultramicroscopy; 2012 Mar; 114():62-71. PubMed ID: 22356790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of TEM specimen preparation on chemical composition of Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals.
    Srot V; Gec M; van Aken PA; Jeon JH; Ceh M
    Micron; 2014 Jul; 62():37-42. PubMed ID: 24811990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface damage formation during ion-beam thinning of samples for transmission electron microscopy.
    McCaffrey JP; Phaneuf MW; Madsen LD
    Ultramicroscopy; 2001 Apr; 87(3):97-104. PubMed ID: 11330503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging thin films of nanoporous low-k dielectrics: comparison between ultramicrotomy and focused ion beam preparations for transmission electron microscopy.
    Thompson LE; Rice PM; Delenia E; Lee VY; Brock PJ; Magbitang TP; Dubois G; Volksen W; Miller RD; Kim HC
    Microsc Microanal; 2006 Apr; 12(2):156-9. PubMed ID: 17481352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of cross-sectional transmission electron microscopy samples by electron beam lithography and reactive ion etching.
    Wetzel JT
    J Electron Microsc Tech; 1989 Jan; 11(1):62-9. PubMed ID: 2915262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.