BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 25287967)

  • 1. Liquid phase based separation systems for depletion, prefractionation, and enrichment of proteins in biological fluids and matrices for in-depth proteomics analysis-An update covering the period 2011-2014.
    Puangpila C; Mayadunne E; El Rassi Z
    Electrophoresis; 2015 Jan; 36(1):238-52. PubMed ID: 25287967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid-phase-based separation systems for depletion, prefractionation and enrichment of proteins in biological fluids and matrices for in-depth proteomics analysis--an update covering the period 2008-2011.
    Selvaraju S; Rassi ZE
    Electrophoresis; 2012 Jan; 33(1):74-88. PubMed ID: 22125262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquid-phase based separation systems for depletion, prefractionation, and enrichment of proteins in biological fluids and matrices for in-depth proteomics analysis-An update covering the period 2014-2016.
    El Rassi Z; Puangpila C
    Electrophoresis; 2017 Jan; 38(1):150-161. PubMed ID: 27730653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid-phase-based separation systems for depletion, prefractionation and enrichment of proteins in biological fluids for in-depth proteomics analysis.
    Jmeian Y; El Rassi Z
    Electrophoresis; 2009 Jan; 30(1):249-61. PubMed ID: 19101934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Affinity prefractionation for MS-based plasma proteomics.
    Pernemalm M; Lewensohn R; Lehtiƶ J
    Proteomics; 2009 Mar; 9(6):1420-7. PubMed ID: 19235168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prefractionation, enrichment, desalting and depleting of low volume and low abundance proteins and peptides using the MF10.
    Wasinger V; Ly L; Fitzgerald A; Walsh B
    Methods Mol Biol; 2008; 424():257-75. PubMed ID: 18369868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multicolumn separation platform for simultaneous depletion and prefractionation prior to 2-DE for facilitating in-depth serum proteomics profiling.
    Jmeian Y; El Rassi Z
    J Proteome Res; 2009 Oct; 8(10):4592-603. PubMed ID: 19670910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of immobilized metal affinity chromatography in proteomics.
    Sun X; Chiu JF; He QY
    Expert Rev Proteomics; 2005 Oct; 2(5):649-57. PubMed ID: 16209645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasma prefractionation methods for proteomic analysis and perspectives in clinical applications.
    Chutipongtanate S; Chatchen S; Svasti J
    Proteomics Clin Appl; 2017 Jul; 11(7-8):. PubMed ID: 28195677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversed-phase high-performance liquid chromatographic prefractionation of immunodepleted human serum proteins to enhance mass spectrometry identification of lower-abundant proteins.
    Martosella J; Zolotarjova N; Liu H; Nicol G; Boyes BE
    J Proteome Res; 2005; 4(5):1522-37. PubMed ID: 16212403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide enrichment and protein fractionation using selective electrophoresis.
    Ly L; Wasinger VC
    Proteomics; 2008 Oct; 8(20):4197-208. PubMed ID: 18814323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prefractionation techniques in proteome analysis: the mining tools of the third millennium.
    Righetti PG; Castagna A; Antonioli P; Boschetti E
    Electrophoresis; 2005 Jan; 26(2):297-319. PubMed ID: 15657944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein and peptide fractionation, enrichment and depletion: tools for the complex proteome.
    Ly L; Wasinger VC
    Proteomics; 2011 Feb; 11(4):513-34. PubMed ID: 21241016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two dimensional liquid phase separations of proteins using online fractionation and concentration between chromatographic dimensions.
    Karty JA; Running WE; Reilly JP
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Mar; 847(2):103-13. PubMed ID: 17056305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of affinity chromatography in proteomics.
    Lee WC; Lee KH
    Anal Biochem; 2004 Jan; 324(1):1-10. PubMed ID: 14654038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free-flow electrophoresis of the human urinary proteome.
    Nissum M; Wildgruber R
    Methods Mol Biol; 2008; 484():131-44. PubMed ID: 18592177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IEF peptide fractionation method combined to shotgun proteomics enhances the exploration of rice milk proteome.
    Manfredi M; Brandi J; Conte E; Pidutti P; Gosetti F; Robotti E; Marengo E; Cecconi D
    Anal Biochem; 2017 Nov; 537():72-77. PubMed ID: 28864145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips.
    Rappsilber J; Mann M; Ishihama Y
    Nat Protoc; 2007; 2(8):1896-906. PubMed ID: 17703201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic design of electric field and membrane in facilitating continuous adsorption for cleanup and enrichment of proteins in direct ESI-MS analysis.
    Zhou Y; Shen H; Yi T; Wen D; Pang N; Liao J; Liu H
    Anal Chem; 2008 Dec; 80(23):8920-9. PubMed ID: 18954078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extending the Depth of Human Plasma Proteome Coverage Using Simple Fractionation Techniques.
    Kaur G; Poljak A; Ali SA; Zhong L; Raftery MJ; Sachdev P
    J Proteome Res; 2021 Feb; 20(2):1261-1279. PubMed ID: 33471535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.