BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 25288186)

  • 1. An update on therapeutic opportunities offered by cancer glycolytic metabolism.
    Granchi C; Fancelli D; Minutolo F
    Bioorg Med Chem Lett; 2014 Nov; 24(21):4915-25. PubMed ID: 25288186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anticancer strategies based on the metabolic profile of tumor cells: therapeutic targeting of the Warburg effect.
    Chen XS; Li LY; Guan YD; Yang JM; Cheng Y
    Acta Pharmacol Sin; 2016 Aug; 37(8):1013-9. PubMed ID: 27374491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Update on Patents Covering Agents That Interfere with the Cancer Glycolytic Cascade.
    Fortunato S; Bononi G; Granchi C; Minutolo F
    ChemMedChem; 2018 Nov; 13(21):2251-2265. PubMed ID: 30226288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Possible therapeutic targets among the molecules involved in the Warburg effect in tumor cells.
    Nam SO; Yotsumoto F; Miyata K; Shirasu N; Miyamoto S; Kuroki M
    Anticancer Res; 2013 Jul; 33(7):2855-60. PubMed ID: 23780970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism.
    Pathania D; Millard M; Neamati N
    Adv Drug Deliv Rev; 2009 Nov; 61(14):1250-75. PubMed ID: 19716393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolomics and cancer drug discovery: let the cells do the talking.
    D'Alessandro A; Zolla L
    Drug Discov Today; 2012 Jan; 17(1-2):3-9. PubMed ID: 22001601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anticancer agents that counteract tumor glycolysis.
    Granchi C; Minutolo F
    ChemMedChem; 2012 Aug; 7(8):1318-50. PubMed ID: 22684868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting respiratory complex I to prevent the Warburg effect.
    Vatrinet R; Iommarini L; Kurelac I; De Luise M; Gasparre G; Porcelli AM
    Int J Biochem Cell Biol; 2015 Jun; 63():41-5. PubMed ID: 25668477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoxia-induced metabolic shifts in cancer cells: moving beyond the Warburg effect.
    Weljie AM; Jirik FR
    Int J Biochem Cell Biol; 2011 Jul; 43(7):981-9. PubMed ID: 20797448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of phosphoglycerate mutase 1 in tumor aerobic glycolysis and its potential therapeutic implications.
    Jiang X; Sun Q; Li H; Li K; Ren X
    Int J Cancer; 2014 Nov; 135(9):1991-6. PubMed ID: 24285383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy.
    Abdel-Wahab AF; Mahmoud W; Al-Harizy RM
    Pharmacol Res; 2019 Dec; 150():104511. PubMed ID: 31678210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor glycolysis as a target for cancer therapy: progress and prospects.
    Ganapathy-Kanniappan S; Geschwind JF
    Mol Cancer; 2013 Dec; 12():152. PubMed ID: 24298908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Warburg effect and its cancer therapeutic implications.
    Chen Z; Lu W; Garcia-Prieto C; Huang P
    J Bioenerg Biomembr; 2007 Jun; 39(3):267-74. PubMed ID: 17551814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Post-translational modifications and the Warburg effect.
    Hitosugi T; Chen J
    Oncogene; 2014 Aug; 33(34):4279-85. PubMed ID: 24096483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The warburg effect: why and how do cancer cells activate glycolysis in the presence of oxygen?
    López-Lázaro M
    Anticancer Agents Med Chem; 2008 Apr; 8(3):305-12. PubMed ID: 18393789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia.
    Xu RH; Pelicano H; Zhou Y; Carew JS; Feng L; Bhalla KN; Keating MJ; Huang P
    Cancer Res; 2005 Jan; 65(2):613-21. PubMed ID: 15695406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor aerobic glycolysis: new insights into therapeutic strategies with targeted delivery.
    Talekar M; Boreddy SR; Singh A; Amiji M
    Expert Opin Biol Ther; 2014 Aug; 14(8):1145-59. PubMed ID: 24762115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose metabolism in cancer cells.
    Annibaldi A; Widmann C
    Curr Opin Clin Nutr Metab Care; 2010 Jul; 13(4):466-70. PubMed ID: 20473153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How the Warburg effect supports aggressiveness and drug resistance of cancer cells?
    Icard P; Shulman S; Farhat D; Steyaert JM; Alifano M; Lincet H
    Drug Resist Updat; 2018 May; 38():1-11. PubMed ID: 29857814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antitumor effects of energy restriction-mimetic agents: thiazolidinediones.
    Omar HA; Salama SA; Arafa el-SA; Weng JR
    Biol Chem; 2013 Jul; 394(7):865-70. PubMed ID: 23612598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.