These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 25288224)

  • 1. VHF NEMS-CMOS piezoresistive resonators for advanced sensing applications.
    Arcamone J; Dupré C; Arndt G; Colinet E; Hentz S; Ollier E; Duraffourg L
    Nanotechnology; 2014 Oct; 25(43):435501. PubMed ID: 25288224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Top-Down CMOS-NEMS Polysilicon Nanowire with Piezoresistive Transduction.
    Marigó E; Sansa M; Pérez-Murano F; Uranga A; Barniol N
    Sensors (Basel); 2015 Jul; 15(7):17036-47. PubMed ID: 26184222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-plane nanoelectromechanical resonators based on silicon nanowire piezoresistive detection.
    Mile E; Jourdan G; Bargatin I; Labarthe S; Marcoux C; Andreucci P; Hentz S; Kharrat C; Colinet E; Duraffourg L
    Nanotechnology; 2010 Apr; 21(16):165504. PubMed ID: 20351411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CMOS-NEMS Copper Switches Monolithically Integrated Using a 65 nm CMOS Technology.
    Muñoz-Gamarra JL; Uranga A; Barniol N
    Micromachines (Basel); 2016 Feb; 7(2):. PubMed ID: 30407403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentially piezoresistive transduction of high-Q encapsulated SOI-MEMS resonators with sub-100 nm gaps.
    Li CS; Li MH; Li SS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jan; 62(1):220-9. PubMed ID: 25585404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and Measurement of a Suspended Nanochannel Microbridge Resonator Monolithically Integrated with CMOS Readout Circuitry.
    Vidal-Álvarez G; Marigó E; Torres F; Barniol N
    Micromachines (Basel); 2016 Mar; 7(3):. PubMed ID: 30407413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High frequency top-down junction-less silicon nanowire resonators.
    Koumela A; Hentz S; Mercier D; Dupré C; Ollier E; Feng PX; Purcell ST; Duraffourg L
    Nanotechnology; 2013 Nov; 24(43):435203. PubMed ID: 24107321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-sensing, tunable monolayer MoS
    Manzeli S; Dumcenco D; Migliato Marega G; Kis A
    Nat Commun; 2019 Oct; 10(1):4831. PubMed ID: 31645562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanomechanical silicon resonators with intrinsic tunable gain and sub-nW power consumption.
    Bartsch ST; Lovera A; Grogg D; Ionescu AM
    ACS Nano; 2012 Jan; 6(1):256-64. PubMed ID: 22148851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Sensitive Electromechanical Piezoresistive Pressure Sensors Based on Large-Area Layered PtSe
    Wagner S; Yim C; McEvoy N; Kataria S; Yokaribas V; Kuc A; Pindl S; Fritzen CP; Heine T; Duesberg GS; Lemme MC
    Nano Lett; 2018 Jun; 18(6):3738-3745. PubMed ID: 29768010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Suspended Silicon Single-Hole Transistor as an Extremely Scaled Gigahertz Nanoelectromechanical Beam Resonator.
    Zhang ZZ; Hu Q; Song XX; Ying Y; Li HO; Zhang Z; Guo GP
    Adv Mater; 2020 Dec; 32(52):e2005625. PubMed ID: 33191506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parametric nanomechanical amplification at very high frequency.
    Karabalin RB; Feng XL; Roukes ML
    Nano Lett; 2009 Sep; 9(9):3116-23. PubMed ID: 19736969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-sensitivity linear piezoresistive transduction for nanomechanical beam resonators.
    Sansa M; Fernández-Regúlez M; Llobet J; San Paulo Á; Pérez-Murano F
    Nat Commun; 2014 Jul; 5():4313. PubMed ID: 25000256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depletion-mode carrier-plasma optical modulator in zero-change advanced CMOS.
    Shainline JM; Orcutt JS; Wade MT; Nammari K; Moss B; Georgas M; Sun C; Ram RJ; Stojanović V; Popović MA
    Opt Lett; 2013 Aug; 38(15):2657-9. PubMed ID: 23903103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave cavity-enhanced transduction for plug and play nanomechanics at room temperature.
    Faust T; Krenn P; Manus S; Kotthaus JP; Weig EM
    Nat Commun; 2012 Mar; 3():728. PubMed ID: 22395619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Temperature-Compensated Single-Crystal Silicon-on-Insulator (SOI) MEMS Oscillator with a CMOS Amplifier Chip.
    Islam MS; Wei R; Lee J; Xie Y; Mandal S; Feng PX
    Micromachines (Basel); 2018 Oct; 9(11):. PubMed ID: 30715058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency-Dependent Piezoresistive Effect in Top-down Fabricated Gold Nanoresistors.
    Ti C; Ari AB; Karakan MÇ; Yanik C; Kaya II; Hanay MS; Svitelskiy O; González M; Seren H; Ekinci KL
    Nano Lett; 2021 Aug; 21(15):6533-6539. PubMed ID: 34319115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasensitive room-temperature piezoresistive transduction in graphene-based nanoelectromechanical systems.
    Kumar M; Bhaskaran H
    Nano Lett; 2015 Apr; 15(4):2562-7. PubMed ID: 25723099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full-wafer fabrication by nanostencil lithography of micro/nanomechanical mass sensors monolithically integrated with CMOS.
    Arcamone J; van den Boogaart MA; Serra-Graells F; Fraxedas J; Brugger J; Pérez-Murano F
    Nanotechnology; 2008 Jul; 19(30):305302. PubMed ID: 21828759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-biased 215 MHz magnetoelectric NEMS resonator for ultra-sensitive DC magnetic field detection.
    Nan T; Hui Y; Rinaldi M; Sun NX
    Sci Rep; 2013; 3():1985. PubMed ID: 23760520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.