BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 2528829)

  • 1. Novel genetic instability associated with a developmentally regulated glycosyltransferase locus in Chinese hamster ovary cells.
    Sallustio S; Stanley P
    Somat Cell Mol Genet; 1989 Sep; 15(5):387-400. PubMed ID: 2528829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dominant mutation to ricin resistance in Chinese hamster ovary cells induces UDP-GlcNAc:glycopeptide beta-4-N-acetylglucosaminyltransferase III activity.
    Campbell C; Stanley P
    J Biol Chem; 1984 Nov; 259(21):13370-8. PubMed ID: 6238035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A subclass of cell surface carbohydrates revealed by a CHO mutant with two glycosylation mutations.
    Stanley P; Sundaram S; Sallustio S
    Glycobiology; 1991 Jun; 1(3):307-14. PubMed ID: 1838951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular analysis of three gain-of-function CHO mutants that add the bisecting GlcNAc to N-glycans.
    Stanley P; Sundaram S; Tang J; Shi S
    Glycobiology; 2005 Jan; 15(1):43-53. PubMed ID: 15329358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CHO cells provide access to novel N-glycans and developmentally regulated glycosyltransferases.
    Stanley P; Raju TS; Bhaumik M
    Glycobiology; 1996 Oct; 6(7):695-9. PubMed ID: 8953280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Lec4A CHO glycosylation mutant arises from miscompartmentalization of a Golgi glycosyltransferase.
    Chaney W; Sundaram S; Friedman N; Stanley P
    J Cell Biol; 1989 Nov; 109(5):2089-96. PubMed ID: 2530238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of carbohydrate processing: the lec1A CHO mutation results in partial loss of N-acetylglucosaminyltransferase I activity.
    Stanley P; Chaney W
    Mol Cell Biol; 1985 Jun; 5(6):1204-11. PubMed ID: 2993857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lec1A Chinese hamster ovary cell mutants appear to arise from a structural alteration in N-acetylglucosaminyltransferase I.
    Chaney W; Stanley P
    J Biol Chem; 1986 Aug; 261(23):10551-7. PubMed ID: 2942543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfection of a human gene that corrects the Lec1 glycosylation defect: evidence for transfer of the structural gene for N-acetylglucosaminyltransferase I.
    Kumar R; Stanley P
    Mol Cell Biol; 1989 Dec; 9(12):5713-7. PubMed ID: 2531285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycomics profiling of Chinese hamster ovary cell glycosylation mutants reveals N-glycans of a novel size and complexity.
    North SJ; Huang HH; Sundaram S; Jang-Lee J; Etienne AT; Trollope A; Chalabi S; Dell A; Stanley P; Haslam SM
    J Biol Chem; 2010 Feb; 285(8):5759-75. PubMed ID: 19951948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibodies that recognize bisected complex N-glycans on cell surface glycoproteins can be made in mice lacking N-acetylglucosaminyltransferase III.
    Lee J; Park SH; Stanley P
    Glycoconj J; 2002 Mar; 19(3):211-9. PubMed ID: 12815232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induced reversion of a Chinese hamster ovary triple auxotroph. Validation of the system with several mutagens.
    Taylor RT; Wu R; Hanna ML
    Mutat Res; 1985 Sep; 151(2):293-308. PubMed ID: 3839900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and expression of N-acetylglucosaminyltransferase I, the medial Golgi transferase that initiates complex N-linked carbohydrate formation.
    Kumar R; Yang J; Larsen RD; Stanley P
    Proc Natl Acad Sci U S A; 1990 Dec; 87(24):9948-52. PubMed ID: 1702225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A point mutation causes mistargeting of Golgi GlcNAc-TV in the Lec4A Chinese hamster ovary glycosylation mutant.
    Weinstein J; Sundaram S; Wang X; Delgado D; Basu R; Stanley P
    J Biol Chem; 1996 Nov; 271(44):27462-9. PubMed ID: 8910328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tetracycline-regulated overexpression of glycosyltransferases in Chinese hamster ovary cells.
    UmaƱa P; Jean-Mairet J; Bailey JE
    Biotechnol Bioeng; 1999 Dec; 65(5):542-9. PubMed ID: 10516580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Independent Lec1A CHO glycosylation mutants arise from point mutations in N-acetylglucosaminyltransferase I that reduce affinity for both substrates. Molecular consequences based on the crystal structure of GlcNAc-TI.
    Chen W; Unligil UM; Rini JM; Stanley P
    Biochemistry; 2001 Jul; 40(30):8765-72. PubMed ID: 11467936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA-mediated transformation of N-acetylglucosaminyltransferase I activity into an enzyme deficient cell line.
    Ripka J; Pierce M; Fregien N
    Biochem Biophys Res Commun; 1989 Mar; 159(2):554-60. PubMed ID: 2522770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chinese hamster ovary cell mutants with multiple glycosylation defects for production of glycoproteins with minimal carbohydrate heterogeneity.
    Stanley P
    Mol Cell Biol; 1989 Feb; 9(2):377-83. PubMed ID: 2710109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of Chinese hamster ovary cell lines producing Man3GlcNAc2 asparagine-linked glycans.
    Zeng Y; Lehrman MA
    Anal Biochem; 1991 Mar; 193(2):266-71. PubMed ID: 1831334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A single mutation affects both N-acetylglucosaminyltransferase and glucuronosyltransferase activities in a Chinese hamster ovary cell mutant defective in heparan sulfate biosynthesis.
    Lidholt K; Weinke JL; Kiser CS; Lugemwa FN; Bame KJ; Cheifetz S; MassaguƩ J; Lindahl U; Esko JD
    Proc Natl Acad Sci U S A; 1992 Mar; 89(6):2267-71. PubMed ID: 1532254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.