BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 25288479)

  • 1. A hybrid approach to the computational aeroacoustics of human voice production.
    Šidlof P; Zörner S; Hüppe A
    Biomech Model Mechanobiol; 2015 Jun; 14(3):473-88. PubMed ID: 25288479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational aeroacoustics of phonation, part I: Computational methods and sound generation mechanisms.
    Zhao W; Zhang C; Frankel SH; Mongeau L
    J Acoust Soc Am; 2002 Nov; 112(5 Pt 1):2134-46. PubMed ID: 12430825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What can vortices tell us about vocal fold vibration and voice production.
    Khosla S; Murugappan S; Gutmark E
    Curr Opin Otolaryngol Head Neck Surg; 2008 Jun; 16(3):183-7. PubMed ID: 18475068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-FV-FE Aeroacoustic Larynx Model for Investigation of Functional Based Voice Disorders.
    Falk S; Kniesburges S; Schoder S; Jakubaß B; Maurerlehner P; Echternach M; Kaltenbacher M; Döllinger M
    Front Physiol; 2021; 12():616985. PubMed ID: 33762964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aeroacoustic production of low-frequency unvoiced speech sounds.
    Krane MH
    J Acoust Soc Am; 2005 Jul; 118(1):410-27. PubMed ID: 16119362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A theoretical study of F0-F1 interaction with application to resonant speaking and singing voice.
    Titze IR
    J Voice; 2004 Sep; 18(3):292-8. PubMed ID: 15331101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclicity of laryngeal cavity resonance due to vocal fold vibration.
    Kitamura T; Takemoto H; Adachi S; Mokhtari P; Honda K
    J Acoust Soc Am; 2006 Oct; 120(4):2239-49. PubMed ID: 17069319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an Acoustic Simulation Method during Phonation of the Japanese Vowel /a/ by the Boundary Element Method.
    Shiraishi M; Mishima K; Umeda H
    J Voice; 2021 Jul; 35(4):530-544. PubMed ID: 31889645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aeroacoustic source characterization in a physical model of phonation.
    McPhail MJ; Campo ET; Krane MH
    J Acoust Soc Am; 2019 Aug; 146(2):1230. PubMed ID: 31472595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vocal tract length perturbation and its application to male-female vocal tract shape conversion.
    Adachi S; Takemoto H; Kitamura T; Mokhtari P; Honda K
    J Acoust Soc Am; 2007 Jun; 121(6):3874-85. PubMed ID: 17552734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vocal tract changes caused by phonation into a tube: a case study using computer tomography and finite-element modeling.
    Vampola T; Laukkanen AM; Horácek J; Svec JG
    J Acoust Soc Am; 2011 Jan; 129(1):310-5. PubMed ID: 21303012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiated vocal tract control and the reliability of interpretations of nasendoscopic assessment.
    Madill C; Sheard C; Heard R
    J Voice; 2010 May; 24(3):337-45. PubMed ID: 19660904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerodynamics of the human larynx during vocal fold vibration.
    Plant RL
    Laryngoscope; 2005 Dec; 115(12):2087-100. PubMed ID: 16369149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of lips on the production of vowels based on finite element simulations and experiments.
    Arnela M; Blandin R; Dabbaghchian S; Guasch O; Alías F; Pelorson X; Van Hirtum A; Engwall O
    J Acoust Soc Am; 2016 May; 139(5):2852. PubMed ID: 27250177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional vocal tracts with three-dimensional behavior in the numerical generation of vowels.
    Arnela M; Guasch O
    J Acoust Soc Am; 2014 Jan; 135(1):369-79. PubMed ID: 24437777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow-structure-acoustic interaction in a human voice model.
    Becker S; Kniesburges S; Müller S; Delgado A; Link G; Kaltenbacher M; Döllinger M
    J Acoust Soc Am; 2009 Mar; 125(3):1351-61. PubMed ID: 19275292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anisotropic minimum dissipation subgrid-scale model in hybrid aeroacoustic simulations of human phonation.
    Lasota M; Šidlof P; Maurerlehner P; Kaltenbacher M; Schoder S
    J Acoust Soc Am; 2023 Feb; 153(2):1052. PubMed ID: 36859151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element computation of elliptical vocal tract impedances using the two-microphone transfer function method.
    Arnela M; Guasch O
    J Acoust Soc Am; 2013 Jun; 133(6):4197-209. PubMed ID: 23742371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vocal tract area functions and formant frequencies in opera tenors' modal and falsetto registers.
    Echternach M; Sundberg J; Baumann T; Markl M; Richter B
    J Acoust Soc Am; 2011 Jun; 129(6):3955-63. PubMed ID: 21682417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On Short-Time Estimation of Vocal Tract Length from Formant Frequencies.
    Lammert AC; Narayanan SS
    PLoS One; 2015; 10(7):e0132193. PubMed ID: 26177102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.