BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 2528863)

  • 1. Overproduction of glycolytic enzymes in yeast.
    Schaaff I; Heinisch J; Zimmermann FK
    Yeast; 1989; 5(4):285-90. PubMed ID: 2528863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene.
    Tokuhiro K; Ishida N; Nagamori E; Saitoh S; Onishi T; Kondo A; Takahashi H
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):883-90. PubMed ID: 19122995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of pyruvate decarboxylase overproduction on flux distribution at the pyruvate branch point in Saccharomyces cerevisiae.
    van Hoek P; Flikweert MT; van der Aart QJ; Steensma HY; van Dijken JP; Pronk JT
    Appl Environ Microbiol; 1998 Jun; 64(6):2133-40. PubMed ID: 9603825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific ethanol production rate in ethanologenic Escherichia coli strain KO11 Is limited by pyruvate decarboxylase.
    Huerta-Beristain G; Utrilla J; Hernández-Chávez G; Bolívar F; Gosset G; Martinez A
    J Mol Microbiol Biotechnol; 2008; 15(1):55-64. PubMed ID: 18349551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Impact of distillage recycling on the glycolysis key enzymes, stress response metabolites and intracelluler components of the self-flocculating yeast].
    Zi L; Zhang C; Ren J; Yuan W; Chen L
    Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):1019-24. PubMed ID: 20954406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycolytic sequence and respiration of Debaryomyces hansenii as compared to Saccharomyces cerevisiae.
    Sánchez NS; Calahorra M; González-Hernández JC; Peña A
    Yeast; 2006 Apr; 23(5):361-74. PubMed ID: 16598688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of ethanol yield from glycerol via conversion of pyruvate to ethanol in metabolically engineered Saccharomyces cerevisiae.
    Yu KO; Jung J; Ramzi AB; Kim SW; Park C; Han SO
    Appl Biochem Biotechnol; 2012 Feb; 166(4):856-65. PubMed ID: 22161213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous overexpression of enzymes of the lower part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae.
    Peter Smits H; Hauf J; Müller S; Hobley TJ; Zimmermann FK; Hahn-Hägerdal B; Nielsen J; Olsson L
    Yeast; 2000 Oct; 16(14):1325-34. PubMed ID: 11015729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerobic adaptation in yeast. II. Changes in enzyme profiles during a step-down anaerobic-aerobic transfer.
    Ball AJ; Bruver RM; Tustanoff ER
    Can J Microbiol; 1975 Jun; 21(6):855-61. PubMed ID: 167928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different signals control the activation of glycolysis in the yeast Saccharomyces cerevisiae.
    Boles E; Heinisch J; Zimmermann FK
    Yeast; 1993 Jul; 9(7):761-70. PubMed ID: 8368010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of pyruvate metabolism in chemostat cultures of Kluyveromyces lactis CBS 2359.
    Zeeman AM; Kuyper M; Pronk JT; van Dijken JP; Steensma HY
    Yeast; 2000 May; 16(7):611-20. PubMed ID: 10806423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global Metabolic Engineering of Glycolytic Pathway via Multicopy Integration in Saccharomyces cerevisiae.
    Yamada R; Wakita K; Ogino H
    ACS Synth Biol; 2017 Apr; 6(4):659-666. PubMed ID: 28080037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerobic adaptation in yeast, IV. Alterations in enzyme synthesis during anaerobic-aerobic transitions in exponentially growing cultures.
    Ball AJ; Bruver RM; Tustanoff ER
    Can J Microbiol; 1975 Jun; 21(6):869-76. PubMed ID: 167929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Glu51 for cofactor binding and catalytic activity in pyruvate decarboxylase from yeast studied by site-directed mutagenesis.
    Killenberg-Jabs M; König S; Eberhardt I; Hohmann S; Hübner G
    Biochemistry; 1997 Feb; 36(7):1900-5. PubMed ID: 9048576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of ethanol on glucose transport, key glycolytic enzymes, and proton extrusion in Saccharomyces cerevisiae.
    Pascual C; Alonso A; Garcia I; Romay C; Kotyk A
    Biotechnol Bioeng; 1988 Jul; 32(3):374-8. PubMed ID: 18584761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. During the initiation of fermentation overexpression of hexokinase PII in yeast transiently causes a similar deregulation of glycolysis as deletion of Tps1.
    Ernandes JR; De Meirsman C; Rolland F; Winderickx J; de Winde J; Brandão RL; Thevelein JM
    Yeast; 1998 Feb; 14(3):255-69. PubMed ID: 9580251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An ethanol-tolerant recombinant Escherichia coli expressing Zymomonas mobilis pdc and adhB genes for enhanced ethanol production from xylose.
    Wang Z; Chen M; Xu Y; Li S; Lu W; Ping S; Zhang W; Lin M
    Biotechnol Lett; 2008 Apr; 30(4):657-63. PubMed ID: 18034308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of transcription and translation of glycolytic enzymes in glucose-limited continuous cultures of Saccharomyces cerevisiae.
    Sierkstra LN; Verbakel JM; Verrips CT
    J Gen Microbiol; 1992 Dec; 138(12):2559-66. PubMed ID: 1487726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steady-state and transient-state analysis of growth and metabolite production in a Saccharomyces cerevisiae strain with reduced pyruvate-decarboxylase activity.
    Flikweert MT; Kuyper M; van Maris AJ; Kötter P; van Dijken JP; Pronk JT
    Biotechnol Bioeng; 1999; 66(1):42-50. PubMed ID: 10556793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutations in phosphofructokinases alter the control characteristics of glycolysis in vivo in Saccharomyces cerevisiae.
    Lloyd D; James CJ; Maitra PK
    Yeast; 1992 Apr; 8(4):291-301. PubMed ID: 1387501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.