These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 25288637)

  • 1. Nicotianamine secretion for zinc excess tolerance.
    Aarts MG
    Plant Physiol; 2014 Oct; 166(2):751-2. PubMed ID: 25288637
    [No Abstract]   [Full Text] [Related]  

  • 2. Root-secreted nicotianamine from Arabidopsis halleri facilitates zinc hypertolerance by regulating zinc bioavailability.
    Tsednee M; Yang SC; Lee DC; Yeh KC
    Plant Physiol; 2014 Oct; 166(2):839-52. PubMed ID: 25118254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nicotianamine in zinc and iron homeostasis.
    Hofmann NR
    Plant Cell; 2012 Feb; 24(2):373. PubMed ID: 22374391
    [No Abstract]   [Full Text] [Related]  

  • 4. Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis.
    Haydon MJ; Kawachi M; Wirtz M; Hillmer S; Hell R; Krämer U
    Plant Cell; 2012 Feb; 24(2):724-37. PubMed ID: 22374397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contrasting effects of nicotianamine synthase knockdown on zinc and nickel tolerance and accumulation in the zinc/cadmium hyperaccumulator Arabidopsis halleri.
    Cornu JY; Deinlein U; Höreth S; Braun M; Schmidt H; Weber M; Persson DP; Husted S; Schjoerring JK; Clemens S
    New Phytol; 2015 Apr; 206(2):738-50. PubMed ID: 25545296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nicotianamine functions in the Phloem-based transport of iron to sink organs, in pollen development and pollen tube growth in Arabidopsis.
    Schuler M; Rellán-Álvarez R; Fink-Straube C; Abadía J; Bauer P
    Plant Cell; 2012 Jun; 24(6):2380-400. PubMed ID: 22706286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased nicotianamine biosynthesis confers enhanced tolerance of high levels of metals, in particular nickel, to plants.
    Kim S; Takahashi M; Higuchi K; Tsunoda K; Nakanishi H; Yoshimura E; Mori S; Nishizawa NK
    Plant Cell Physiol; 2005 Nov; 46(11):1809-18. PubMed ID: 16143596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elevated root nicotianamine concentrations are critical for Zn hyperaccumulation across diverse edaphic environments.
    Uraguchi S; Weber M; Clemens S
    Plant Cell Environ; 2019 Jun; 42(6):2003-2014. PubMed ID: 30809818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading.
    Le Jean M; Schikora A; Mari S; Briat JF; Curie C
    Plant J; 2005 Dec; 44(5):769-82. PubMed ID: 16297069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The zinc homeostasis network of land plants.
    Sinclair SA; Krämer U
    Biochim Biophys Acta; 2012 Sep; 1823(9):1553-67. PubMed ID: 22626733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron-Nicotianamine Transporters Are Required for Proper Long Distance Iron Signaling.
    Kumar RK; Chu HH; Abundis C; Vasques K; Rodriguez DC; Chia JC; Huang R; Vatamaniuk OK; Walker EL
    Plant Physiol; 2017 Nov; 175(3):1254-1268. PubMed ID: 28894019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased sensitivity to iron deficiency in Arabidopsis thaliana overaccumulating nicotianamine.
    Cassin G; Mari S; Curie C; Briat JF; Czernic P
    J Exp Bot; 2009; 60(4):1249-59. PubMed ID: 19188276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nicotianamine is a major player in plant Zn homeostasis.
    Clemens S; Deinlein U; Ahmadi H; Höreth S; Uraguchi S
    Biometals; 2013 Aug; 26(4):623-32. PubMed ID: 23775667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nicotianamine over-accumulation confers resistance to nickel in Arabidopsis thaliana.
    Pianelli K; Mari S; Marquès L; Lebrun M; Czernic P
    Transgenic Res; 2005 Oct; 14(5):739-48. PubMed ID: 16245165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis.
    Rogers EE; Guerinot ML
    Plant Cell; 2002 Aug; 14(8):1787-99. PubMed ID: 12172022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The transition metal chelator nicotianamine is synthesized by filamentous fungi.
    Trampczynska A; Böttcher C; Clemens S
    FEBS Lett; 2006 May; 580(13):3173-8. PubMed ID: 16684531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OsYSL6 is involved in the detoxification of excess manganese in rice.
    Sasaki A; Yamaji N; Xia J; Ma JF
    Plant Physiol; 2011 Dec; 157(4):1832-40. PubMed ID: 21969384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Root-to-shoot long-distance circulation of nicotianamine and nicotianamine-nickel chelates in the metal hyperaccumulator Thlaspi caerulescens.
    Mari S; Gendre D; Pianelli K; Ouerdane L; Lobinski R; Briat JF; Lebrun M; Czernic P
    J Exp Bot; 2006; 57(15):4111-22. PubMed ID: 17079698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response to zinc deficiency of two rice lines with contrasting tolerance is determined by root growth maintenance and organic acid exudation rates, and not by zinc-transporter activity.
    Widodo B; Broadley MR; Rose T; Frei M; Pariasca-Tanaka J; Yoshihashi T; Thomson M; Hammond JP; Aprile A; Close TJ; Ismail AM; Wissuwa M
    New Phytol; 2010 Apr; 186(2):400-14. PubMed ID: 20100202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance.
    Lee DK; Chung PJ; Jeong JS; Jang G; Bang SW; Jung H; Kim YS; Ha SH; Choi YD; Kim JK
    Plant Biotechnol J; 2017 Jun; 15(6):754-764. PubMed ID: 27892643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.