These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 25288789)

  • 1. Sphingomyelin phosphodiesterase acid-like 3A (SMPDL3A) is a novel nucleotide phosphodiesterase regulated by cholesterol in human macrophages.
    Traini M; Quinn CM; Sandoval C; Johansson E; Schroder K; Kockx M; Meikle PJ; Jessup W; Kritharides L
    J Biol Chem; 2014 Nov; 289(47):32895-913. PubMed ID: 25288789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of sphingomyelin phosphodiesterase acid-like 3A gene (SMPDL3A) by liver X receptors.
    Noto PB; Bukhtiyarov Y; Shi M; McKeever BM; McGeehan GM; Lala DS
    Mol Pharmacol; 2012 Oct; 82(4):719-27. PubMed ID: 22810003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-glycosylation of human sphingomyelin phosphodiesterase acid-like 3A (SMPDL3A) is essential for stability, secretion and activity.
    Traini M; Kumaran R; Thaysen-Andersen M; Kockx M; Jessup W; Kritharides L
    Biochem J; 2017 Mar; 474(7):1071-1092. PubMed ID: 28104755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand-dependent and -independent regulation of human hepatic sphingomyelin phosphodiesterase acid-like 3A expression by pregnane X receptor and crosstalk with liver X receptor.
    Jeske J; Bitter A; Thasler WE; Weiss TS; Schwab M; Burk O
    Biochem Pharmacol; 2017 Jul; 136():122-135. PubMed ID: 28414139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Basis for Nucleotide Hydrolysis by the Acid Sphingomyelinase-like Phosphodiesterase SMPDL3A.
    Gorelik A; Illes K; Superti-Furga G; Nagar B
    J Biol Chem; 2016 Mar; 291(12):6376-85. PubMed ID: 26792860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structure and catalytic mechanism of human sphingomyelin phosphodiesterase like 3a--an acid sphingomyelinase homologue with a novel nucleotide hydrolase activity.
    Lim SM; Yeung K; Trésaugues L; Ling TH; Nordlund P
    FEBS J; 2016 Mar; 283(6):1107-23. PubMed ID: 26783088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UFM1 Protects Macrophages from oxLDL-Induced Foam Cell Formation Through a Liver X Receptor α Dependent Pathway.
    Pang Q; Xiong J; Hu XL; He JP; Liu HF; Zhang GY; Li YY; Chen FL
    J Atheroscler Thromb; 2015; 22(11):1124-40. PubMed ID: 26040753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LPS-induced suppression of macrophage cholesterol efflux is mediated by adipocyte enhancer-binding protein 1.
    Majdalawieh A; Ro HS
    Int J Biochem Cell Biol; 2009 Jul; 41(7):1518-25. PubMed ID: 19166963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peroxisome proliferator-activated receptor alpha reduces cholesterol esterification in macrophages.
    Chinetti G; Lestavel S; Fruchart JC; Clavey V; Staels B
    Circ Res; 2003 Feb; 92(2):212-7. PubMed ID: 12574149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting mitochondrial 18 kDa translocator protein (TSPO) regulates macrophage cholesterol efflux and lipid phenotype.
    Taylor JM; Allen AM; Graham A
    Clin Sci (Lond); 2014 Nov; 127(10):603-13. PubMed ID: 24814875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA topoisomerase II inhibitors induce macrophage ABCA1 expression and cholesterol efflux-an LXR-dependent mechanism.
    Zhang L; Jiang M; Shui Y; Chen Y; Wang Q; Hu W; Ma X; Li X; Liu X; Cao X; Liu M; Duan Y; Han J
    Biochim Biophys Acta; 2013 Jun; 1831(6):1134-45. PubMed ID: 23466610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adenosine A2A receptor occupancy stimulates expression of proteins involved in reverse cholesterol transport and inhibits foam cell formation in macrophages.
    Reiss AB; Rahman MM; Chan ES; Montesinos MC; Awadallah NW; Cronstein BN
    J Leukoc Biol; 2004 Sep; 76(3):727-34. PubMed ID: 15197231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IL-33 reduces macrophage foam cell formation.
    McLaren JE; Michael DR; Salter RC; Ashlin TG; Calder CJ; Miller AM; Liew FY; Ramji DP
    J Immunol; 2010 Jul; 185(2):1222-9. PubMed ID: 20543107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alpha-linolenic acid increases cholesterol efflux in macrophage-derived foam cells by decreasing stearoyl CoA desaturase 1 expression: evidence for a farnesoid-X-receptor mechanism of action.
    Zhang J; Kris-Etherton PM; Thompson JT; Hannon DB; Gillies PJ; Heuvel JP
    J Nutr Biochem; 2012 Apr; 23(4):400-9. PubMed ID: 21658928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interferon-β promotes macrophage foam cell formation by altering both cholesterol influx and efflux mechanisms.
    Boshuizen MC; Hoeksema MA; Neele AE; van der Velden S; Hamers AA; Van den Bossche J; Lutgens E; de Winther MP
    Cytokine; 2016 Jan; 77():220-6. PubMed ID: 26427927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excess Nitric Oxide Activates TRPV1-Ca(2+)-Calpain Signaling and Promotes PEST-dependent Degradation of Liver X Receptor α.
    Zhao JF; Shyue SK; Lee TS
    Int J Biol Sci; 2016; 12(1):18-29. PubMed ID: 26722214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. oxLDL and eLDL Induced Membrane Microdomains in Human Macrophages.
    Wallner S; Grandl M; Liebisch G; Peer M; Orsó E; Sigrüner A; Sobota A; Schmitz G
    PLoS One; 2016; 11(11):e0166798. PubMed ID: 27870891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pitavastatin effect on ATP binding cassette A1-mediated lipid efflux from macrophages: evidence for liver X receptor (LXR)-dependent and LXR-independent mechanisms of activation by cAMP.
    Zanotti I; Potì F; Favari E; Steffensen KR; Gustafsson JA; Bernini F
    J Pharmacol Exp Ther; 2006 Apr; 317(1):395-401. PubMed ID: 16415093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quercetin up-regulates expressions of peroxisome proliferator-activated receptor γ, liver X receptor α, and ATP binding cassette transporter A1 genes and increases cholesterol efflux in human macrophage cell line.
    Lee SM; Moon J; Cho Y; Chung JH; Shin MJ
    Nutr Res; 2013 Feb; 33(2):136-43. PubMed ID: 23399664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vitamin D Protects Against Atherosclerosis via Regulation of Cholesterol Efflux and Macrophage Polarization in Hypercholesterolemic Swine.
    Yin K; You Y; Swier V; Tang L; Radwan MM; Pandya AN; Agrawal DK
    Arterioscler Thromb Vasc Biol; 2015 Nov; 35(11):2432-42. PubMed ID: 26381871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.