These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 2528883)

  • 1. Hardness of restorative resins: effect of camphorquinone, amine, and inhibitor.
    Peutzfeldt A; Asmussen E
    Acta Odontol Scand; 1989 Aug; 47(4):229-31. PubMed ID: 2528883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network structures of Bis-GMA/TEGDMA resins differ in DC, shrinkage-strain, hardness and optical properties as a function of reducing agent.
    Furuse AY; Mondelli J; Watts DC
    Dent Mater; 2011 May; 27(5):497-506. PubMed ID: 21388670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of co-initiator ratio on the polymer properties of experimental resin composites formulated with camphorquinone and phenyl-propanedione.
    Schneider LF; Cavalcante LM; Consani S; Ferracane JL
    Dent Mater; 2009 Mar; 25(3):369-75. PubMed ID: 18848352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photobleaching of camphorquinone during polymerization of dimethacrylate-based resins.
    Asmusen S; Arenas G; Cook WD; Vallo C
    Dent Mater; 2009 Dec; 25(12):1603-11. PubMed ID: 19762072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of photoinitiator type on the rate of polymerization, degree of conversion, hardness and yellowing of dental resin composites.
    Schneider LF; Pfeifer CS; Consani S; Prahl SA; Ferracane JL
    Dent Mater; 2008 Sep; 24(9):1169-77. PubMed ID: 18325583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Restorative resins: hardness and strength vs. quantity of remaining double bonds.
    Asmussen E
    Scand J Dent Res; 1982 Dec; 90(6):484-9. PubMed ID: 6218603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoinitiation chemistry affects light transmission and degree of conversion of curing experimental dental resin composites.
    Ogunyinka A; Palin WM; Shortall AC; Marquis PM
    Dent Mater; 2007 Jul; 23(7):807-13. PubMed ID: 16914191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultraviolet light-induced yellowing of dental restorative resins.
    Ferracane JL; Moser JB; Greener EH
    J Prosthet Dent; 1985 Oct; 54(4):483-7. PubMed ID: 2931511
    [No Abstract]   [Full Text] [Related]  

  • 9. Micro-Raman spectroscopic analysis of the degree of conversion of composite resins containing different initiators cured by polywave or monowave LED units.
    Miletic V; Santini A
    J Dent; 2012 Feb; 40(2):106-13. PubMed ID: 22094322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benzoyl germanium derivatives as novel visible light photoinitiators for dental materials.
    Moszner N; Fischer UK; Ganster B; Liska R; Rheinberger V
    Dent Mater; 2008 Jul; 24(7):901-7. PubMed ID: 18155290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formulation and characterization of a novel fluoride-releasing dental composite.
    Xu X; Ling L; Wang R; Burgess JO
    Dent Mater; 2006 Nov; 22(11):1014-23. PubMed ID: 16378636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of leachable components from four commercial dental composites by gas and liquid chromatography/mass spectrometry.
    Spahl W; Budzikiewicz H; Geurtsen W
    J Dent; 1998 Mar; 26(2):137-45. PubMed ID: 9540311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoinitiator content in restorative composites: influence on degree of conversion, reaction kinetics, volumetric shrinkage and polymerization stress.
    Pfeifer CS; Ferracane JL; Sakaguchi RL; Braga RR
    Am J Dent; 2009 Aug; 22(4):206-10. PubMed ID: 19824555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Infrared spectroscopy of composite resins].
    Ban S; Murakami H; Mizumoto A; Kito M; Hasegawa J
    Aichi Gakuin Daigaku Shigakkai Shi; 1982 Dec; 20(3):307-13. PubMed ID: 6228157
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects of a low-shrinkage methacrylate monomer and monoacylphosphine oxide photoinitiator on curing efficiency and mechanical properties of experimental resin-based composites.
    Manojlovic D; Dramićanin MD; Milosevic M; Zeković I; Cvijović-Alagić I; Mitrovic N; Miletic V
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():487-94. PubMed ID: 26478336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can phenyl-propanedione influence Knoop hardness, rate of polymerization and bond strength of resin composite restorations?
    Brandt WC; Tomaselli Lde O; Correr-Sobrinho L; Sinhoreti MA
    J Dent; 2011 Jun; 39(6):438-47. PubMed ID: 21510999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photopolymerization of highly filled dimethacrylate-based composites using Type I or Type II photoinitiators and varying co-monomer ratios.
    Randolph LD; Steinhaus J; Möginger B; Gallez B; Stansbury J; Palin WM; Leloup G; Leprince JG
    Dent Mater; 2016 Feb; 32(2):136-48. PubMed ID: 26719130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of curing protocol on selected properties of light-curing polymers: degree of conversion, volume contraction, elastic modulus, and glass transition temperature.
    Dewaele M; Asmussen E; Peutzfeldt A; Munksgaard EC; Benetti AR; Finné G; Leloup G; Devaux J
    Dent Mater; 2009 Dec; 25(12):1576-84. PubMed ID: 19747719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of composite resins by NMR and TEM.
    Vankerckhoven H; Lambrechts P; van Beylen M; Vanherle G
    J Dent Res; 1981 Dec; 60(12):1957-65. PubMed ID: 6457853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of thermal expansion on shrinkage during photopolymerization of dental resins based on bis-GMA/TEGDMA.
    Mucci V; Arenas G; Duchowicz R; Cook WD; Vallo C
    Dent Mater; 2009 Jan; 25(1):103-14. PubMed ID: 18599116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.