These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 25289582)

  • 1. Dynamic modeling and simulation of rough cylindrical micro/nanoparticle manipulation with atomic force microscopy.
    Korayem MH; Badkoobeh Hezaveh H; Taheri M
    Microsc Microanal; 2014 Dec; 20(6):1692-707. PubMed ID: 25289582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of relative size of asperities and adhering particles on the adhesion force.
    Kumar A; Staedler T; Jiang X
    J Colloid Interface Sci; 2013 Nov; 409():211-8. PubMed ID: 23972501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic simulation and modeling of the motion modes produced during the 3D controlled manipulation of biological micro/nanoparticles based on the AFM.
    Saraee MB; Korayem MH
    J Theor Biol; 2015 Aug; 378():65-78. PubMed ID: 25953389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of 3D nanomanipulation for rough spherical elastic and viscoelastic particles in a liquid medium; experimentally determination of cell's roughness parameters and Hamaker constant's correction.
    Korayem MH; Shahali S; Rastegar Z
    J Mech Behav Biomed Mater; 2019 Feb; 90():313-327. PubMed ID: 30396045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrostatic double-layer interaction between spherical particles inside a rough capillary.
    Das PK; Bhattacharjee S
    J Colloid Interface Sci; 2004 May; 273(1):278-90. PubMed ID: 15051462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D investigation of dynamic behavior and sensitivity analysis of the parameters of spherical biological particles in the first phase of AFM-based manipulations with the consideration of humidity effect.
    Korayem MH; Mahmoodi Z; Mohammadi M
    J Theor Biol; 2018 Jan; 436():105-119. PubMed ID: 28941867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The characterisation of rough particle contacts by atomic force microscopy.
    George M; Goddard DT
    J Colloid Interface Sci; 2006 Jul; 299(2):665-72. PubMed ID: 16631191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pull-off force measurements between rough surfaces by atomic force microscopy.
    Beach ER; Tormoen GW; Drelich J; Han R
    J Colloid Interface Sci; 2002 Mar; 247(1):84-99. PubMed ID: 16290443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the adhesion between fine particles and nanocontacts: an atomic force microscope study.
    Farshchi-Tabrizi M; Kappl M; Cheng Y; Gutmann J; Butt HJ
    Langmuir; 2006 Feb; 22(5):2171-84. PubMed ID: 16489804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the charge and roughness of surfaces on normal and friction forces measured in aqueous solutions.
    McNamee CE; Higashitani K
    Langmuir; 2013 Apr; 29(16):5013-22. PubMed ID: 23530856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reducing adhesion force by means of atomic layer deposition of ZnO films with nanoscale surface roughness.
    Chai Z; Liu Y; Lu X; He D
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3325-30. PubMed ID: 24506135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling and simulation of contact parameters of elliptical and cubic nanoparticles to be used in nanomanipulation based on atomic force microscope.
    Korayem MH; Khaksar H; Sharahi HJ
    Ultramicroscopy; 2019 Nov; 206():112808. PubMed ID: 31301606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adhesion between Nanoscale Rough Surfaces.
    Rabinovich YI; Adler JJ; Ata A; Singh RK; Moudgil BM
    J Colloid Interface Sci; 2000 Dec; 232(1):17-24. PubMed ID: 11071727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro-wilhelmy and related liquid property measurements using constant-diameter nanoneedle-tipped atomic force microscope probes.
    Yazdanpanah MM; Hosseini M; Pabba S; Berry SM; Dobrokhotov VV; Safir A; Keynton RS; Cohn RW
    Langmuir; 2008 Dec; 24(23):13753-64. PubMed ID: 18986184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling and validation of the van der Waals force during the adhesion of nanoscale objects to rough surfaces: a detailed description.
    Jaiswal RP; Kumar G; Kilroy CM; Beaudoin SP
    Langmuir; 2009 Sep; 25(18):10612-23. PubMed ID: 19735133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correction of random surface roughness on colloidal probes in measuring adhesion.
    Yang S; Zhang H; Hsu SM
    Langmuir; 2007 Jan; 23(3):1195-202. PubMed ID: 17241032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of solid surface tension from particle-substrate pull-off forces measured with the atomic force microscope.
    Drelich J; Tormoen GW; Beach ER
    J Colloid Interface Sci; 2004 Dec; 280(2):484-97. PubMed ID: 15533421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematical models for the van der Waals force and capillary force between a rough particle and surface.
    You S; Wan MP
    Langmuir; 2013 Jul; 29(29):9104-17. PubMed ID: 23802940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oscillatory forces of nanoparticle suspensions confined between rough surfaces modified with polyelectrolytes via the layer-by-layer technique.
    Zeng Y; von Klitzing R
    Langmuir; 2012 Apr; 28(15):6313-21. PubMed ID: 22420681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The deformation and adhesion of randomly rough and patterned surfaces.
    Benz M; Rosenberg KJ; Kramer EJ; Israelachvili JN
    J Phys Chem B; 2006 Jun; 110(24):11884-93. PubMed ID: 16800491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.