BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 25289583)

  • 21. Information networks in the mammary gland.
    Hennighausen L; Robinson GW
    Nat Rev Mol Cell Biol; 2005 Sep; 6(9):715-25. PubMed ID: 16231422
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of induced energy deficiency on lactoferrin concentration in milk and the lactoferrin reaction of primary bovine mammary epithelial cells in vitro.
    Danowski K; Gross JJ; Meyer HH; Kliem H
    J Anim Physiol Anim Nutr (Berl); 2013 Aug; 97(4):647-55. PubMed ID: 22540894
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Epidermal growth factor and hepatocyte growth factor receptors collaborate to induce multiple biological responses in bovine mammary epithelial cells.
    Accornero P; Martignani E; Miretti S; Starvaggi Cucuzza L; Baratta M
    J Dairy Sci; 2009 Aug; 92(8):3667-75. PubMed ID: 19620648
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling HER2 effects on cell behavior from mass spectrometry phosphotyrosine data.
    Kumar N; Wolf-Yadlin A; White FM; Lauffenburger DA
    PLoS Comput Biol; 2007 Jan; 3(1):e4. PubMed ID: 17206861
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proteomics, genomics, and pathway analyses of Escherichia coli and Staphylococcus aureus infected milk whey reveal molecular pathways and networks involved in mastitis.
    Ibeagha-Awemu EM; Ibeagha AE; Messier S; Zhao X
    J Proteome Res; 2010 Sep; 9(9):4604-19. PubMed ID: 20704270
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inducible expression of enhanced green fluorescent protein by interleukin-1α, interleukin-1β and Toll-like receptor 2 promoters in goat mammary epithelial cells in response to bacterial challenges.
    Ru K; Su F; Zheng Y; Zhang Y; Luo Y; Guo Z; He X; Liu X; Zhang J; Liu J; Zhang Y
    Vet J; 2015 Jan; 203(1):85-91. PubMed ID: 25496912
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unilateral once daily milking locally induces differential gene expression in both mammary tissue and milk epithelial cells revealing mammary remodeling.
    Boutinaud M; Galio L; Lollivier V; Finot L; Wiart S; Esquerré D; Devinoy E
    Physiol Genomics; 2013 Oct; 45(20):973-85. PubMed ID: 23983197
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Technical note: Validation of candidate reference genes for normalization of quantitative PCR in bovine mammary epithelial cells responding to inflammatory stimuli.
    Bougarn S; Cunha P; Gilbert FB; Meurens F; Rainard P
    J Dairy Sci; 2011 May; 94(5):2425-30. PubMed ID: 21524534
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mathematical modeling and sensitivity analysis of the integrated TNFα-mediated apoptotic pathway for identifying key regulators.
    Koh G; Lee DY
    Comput Biol Med; 2011 Jul; 41(7):512-28. PubMed ID: 21632045
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sig2GRN: a software tool linking signaling pathway with gene regulatory network for dynamic simulation.
    Zhang F; Liu R; Zheng J
    BMC Syst Biol; 2016 Dec; 10(Suppl 4):123. PubMed ID: 28155685
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative inference of dynamic regulatory pathways via microarray data.
    Chang WC; Li CW; Chen BS
    BMC Bioinformatics; 2005 Mar; 6():44. PubMed ID: 15748298
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nutrient availability and lactogenic hormones regulate mammary protein synthesis through the mammalian target of rapamycin signaling pathway.
    Burgos SA; Dai M; Cant JP
    J Dairy Sci; 2010 Jan; 93(1):153-61. PubMed ID: 20059914
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting link directionality in gene regulation from gene expression profiles using volatility-constrained correlation.
    Ochiai T; Nacher JC
    Biosystems; 2016 Jul; 145():9-18. PubMed ID: 27164307
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mammalian target of rapamycin regulates the growth of mammary epithelial cells through the inhibitor of deoxyribonucleic acid binding Id1 and their functional differentiation through Id2.
    Jankiewicz M; Groner B; Desrivières S
    Mol Endocrinol; 2006 Oct; 20(10):2369-81. PubMed ID: 16772532
    [TBL] [Abstract][Full Text] [Related]  

  • 35. WDNM1 is associated with differentiation and apoptosis of mammary epithelial cells.
    Kho Y; Kim S; Yoon BS; Moon JH; Kwak S; Park G; Woo J; Oh S; Hong K; Kim S; Kim H; You S; Choi Y
    Anim Biotechnol; 2008; 19(2):89-103. PubMed ID: 18432400
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring pathways from gene co-expression to network dynamics.
    Li H; Sun Y; Zhan M
    Methods Mol Biol; 2009; 541():249-67. PubMed ID: 19381544
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SignaLink 2 - a signaling pathway resource with multi-layered regulatory networks.
    Fazekas D; Koltai M; Türei D; Módos D; Pálfy M; Dúl Z; Zsákai L; Szalay-Bekő M; Lenti K; Farkas IJ; Vellai T; Csermely P; Korcsmáros T
    BMC Syst Biol; 2013 Jan; 7():7. PubMed ID: 23331499
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic analysis of integrated signaling, metabolic, and regulatory networks.
    Lee JM; Gianchandani EP; Eddy JA; Papin JA
    PLoS Comput Biol; 2008 May; 4(5):e1000086. PubMed ID: 18483615
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intracellular Information Processing through Encoding and Decoding of Dynamic Signaling Features.
    Makadia HK; Schwaber JS; Vadigepalli R
    PLoS Comput Biol; 2015 Oct; 11(10):e1004563. PubMed ID: 26491963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering of a synthetic quadrastable gene network to approach Waddington landscape and cell fate determination.
    Wu F; Su RQ; Lai YC; Wang X
    Elife; 2017 Apr; 6():. PubMed ID: 28397688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.