These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 25289928)

  • 81. Osteoclast-like cell formation by circulating myeloma B lymphocytes: role of RANK-L.
    Calvani N; Silvestris F; Cafforio P; Dammacco F
    Leuk Lymphoma; 2004 Feb; 45(2):377-80. PubMed ID: 15101727
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Pro-inflammatory Cytokines: Cellular and Molecular Drug Targets for Glucocorticoid-induced-osteoporosis via Osteocyte.
    Wang T; Yu X; He C
    Curr Drug Targets; 2019; 20(1):1-15. PubMed ID: 29618305
    [TBL] [Abstract][Full Text] [Related]  

  • 83. LIGHT/TNFSF14 as a New Biomarker of Bone Disease in Multiple Myeloma Patients Experiencing Therapeutic Regimens.
    Brunetti G; Rizzi R; Storlino G; Bortolotti S; Colaianni G; Sanesi L; Lippo L; Faienza MF; Mestice A; Curci P; Specchia G; Grano M; Colucci S
    Front Immunol; 2018; 9():2459. PubMed ID: 30405638
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Pathophysiology of multiple myeloma bone disease.
    Lentzsch S; Ehrlich LA; Roodman GD
    Hematol Oncol Clin North Am; 2007 Dec; 21(6):1035-49, viii. PubMed ID: 17996587
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Metastases and multiple myeloma generate distinct transcriptional footprints in osteocytes in vivo.
    Eisenberger S; Ackermann K; Voggenreiter G; Sültmann H; Kasperk C; Pyerin W
    J Pathol; 2008 Apr; 214(5):617-26. PubMed ID: 18266311
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Role of the bone marrow microenvironment in multiple myeloma.
    Roodman GD
    J Bone Miner Res; 2002 Nov; 17(11):1921-5. PubMed ID: 12412796
    [TBL] [Abstract][Full Text] [Related]  

  • 87. PTH receptor signaling in osteocytes governs periosteal bone formation and intracortical remodeling.
    Rhee Y; Allen MR; Condon K; Lezcano V; Ronda AC; Galli C; Olivos N; Passeri G; O'Brien CA; Bivi N; Plotkin LI; Bellido T
    J Bone Miner Res; 2011 May; 26(5):1035-46. PubMed ID: 21140374
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Pathogenesis and Treatment of Myeloma-Related Bone Disease.
    Gau YC; Yeh TJ; Hsu CM; Hsiao SY; Hsiao HH
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328533
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Development of an in vivo model of human multiple myeloma bone disease.
    Alsina M; Boyce B; Devlin RD; Anderson JL; Craig F; Mundy GR; Roodman GD
    Blood; 1996 Feb; 87(4):1495-501. PubMed ID: 8608240
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Ablation of p38α MAPK Signaling in Osteoblast Lineage Cells Protects Mice From Bone Loss Induced by Estrogen Deficiency.
    Thouverey C; Caverzasio J
    Endocrinology; 2015 Dec; 156(12):4377-87. PubMed ID: 26441240
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Osteoclast differentiation by RANKL and OPG signaling pathways.
    Udagawa N; Koide M; Nakamura M; Nakamichi Y; Yamashita T; Uehara S; Kobayashi Y; Furuya Y; Yasuda H; Fukuda C; Tsuda E
    J Bone Miner Metab; 2021 Jan; 39(1):19-26. PubMed ID: 33079279
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The Proteasome and Myeloma-Associated Bone Disease.
    Accardi F; Toscani D; Costa F; Aversa F; Giuliani N
    Calcif Tissue Int; 2018 Feb; 102(2):210-226. PubMed ID: 29080972
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Role of Osteocytes in Cancer Progression in the Bone and the Associated Skeletal Disease.
    Adhikari M; Delgado-Calle J
    Curr Osteoporos Rep; 2021 Jun; 19(3):247-255. PubMed ID: 33818732
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Thymidine phosphorylase exerts complex effects on bone resorption and formation in myeloma.
    Liu H; Liu Z; Du J; He J; Lin P; Amini B; Starbuck MW; Novane N; Shah JJ; Davis RE; Hou J; Gagel RF; Yang J
    Sci Transl Med; 2016 Aug; 8(353):353ra113. PubMed ID: 27559096
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Targeting the bone microenvironment in multiple myeloma.
    Roodman GD
    J Bone Miner Metab; 2010 May; 28(3):244-50. PubMed ID: 20127498
    [TBL] [Abstract][Full Text] [Related]  

  • 96. [Bone disease in multiple myeloma and its mechanism].
    Abe M
    Clin Calcium; 2006 Apr; 16(4):565- 71. PubMed ID: 16582506
    [TBL] [Abstract][Full Text] [Related]  

  • 97. The Emerging Role of Osteocytes in Cancer in Bone.
    Atkinson EG; Delgado-Calle J
    JBMR Plus; 2019 Mar; 3(3):e10186. PubMed ID: 30918922
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Pathogenesis of bone disease in multiple myeloma: from bench to bedside.
    Terpos E; Ntanasis-Stathopoulos I; Gavriatopoulou M; Dimopoulos MA
    Blood Cancer J; 2018 Jan; 8(1):7. PubMed ID: 29330358
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Advances in the pathogenesis of multiple myeloma bone disease.
    Hu C; Kuang C; Zhou W
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2023 Sept 28; 48(9):1403-1410. PubMed ID: 38044652
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Effects of diabetes on osteocytes.
    Kaur J; Khosla S; Farr JN
    Curr Opin Endocrinol Diabetes Obes; 2022 Aug; 29(4):310-317. PubMed ID: 35749726
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.