BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 25290828)

  • 1. Challenges of Huntington's disease and quest for therapeutic biomarkers.
    Kotrcova E; Jarkovska K; Valekova I; Zizkova M; Motlik J; Gadher SJ; Kovarova H
    Proteomics Clin Appl; 2015 Feb; 9(1-2):147-58. PubMed ID: 25290828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective neuronal degeneration in Huntington's disease.
    Cowan CM; Raymond LA
    Curr Top Dev Biol; 2006; 75():25-71. PubMed ID: 16984809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomics of Huntington's disease-affected human embryonic stem cells reveals an evolving pathology involving mitochondrial dysfunction and metabolic disturbances.
    McQuade LR; Balachandran A; Scott HA; Khaira S; Baker MS; Schmidt U
    J Proteome Res; 2014 Dec; 13(12):5648-59. PubMed ID: 25316320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Huntington's disease: pathomechanism and therapeutic perspectives.
    Gárdián G; Vécsei L
    J Neural Transm (Vienna); 2004 Oct; 111(10-11):1485-94. PubMed ID: 15480847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Huntington's disease: new paths to pathogenesis.
    Ross CA
    Cell; 2004 Jul; 118(1):4-7. PubMed ID: 15242639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative proteomic analysis of induced pluripotent stem cells derived from a human Huntington's disease patient.
    Chae JI; Kim DW; Lee N; Jeon YJ; Jeon I; Kwon J; Kim J; Soh Y; Lee DS; Seo KS; Choi NJ; Park BC; Kang SH; Ryu J; Oh SH; Shin DA; Lee DR; Do JT; Park IH; Daley GQ; Song J
    Biochem J; 2012 Sep; 446(3):359-71. PubMed ID: 22694310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards a comprehensive understanding of the contributions of mitochondrial dysfunction and oxidative stress in the pathogenesis and pathophysiology of Huntington's disease.
    Tobore TO
    J Neurosci Res; 2019 Nov; 97(11):1455-1468. PubMed ID: 31304621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial dysfunction, metabolic deficits, and increased oxidative stress in Huntington's disease.
    Chen CM
    Chang Gung Med J; 2011; 34(2):135-52. PubMed ID: 21539755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein aggregation and pathogenesis of Huntington's disease: mechanisms and correlations.
    Wanker EE
    Biol Chem; 2000; 381(9-10):937-42. PubMed ID: 11076024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of disease: Histone modifications in Huntington's disease.
    Sadri-Vakili G; Cha JH
    Nat Clin Pract Neurol; 2006 Jun; 2(6):330-8. PubMed ID: 16932577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanisms and potential therapeutical targets in Huntington's disease.
    Zuccato C; Valenza M; Cattaneo E
    Physiol Rev; 2010 Jul; 90(3):905-81. PubMed ID: 20664076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protective Effects of Antioxidants in Huntington's Disease: an Extensive Review.
    Essa MM; Moghadas M; Ba-Omar T; Walid Qoronfleh M; Guillemin GJ; Manivasagam T; Justin-Thenmozhi A; Ray B; Bhat A; Chidambaram SB; Fernandes AJ; Song BJ; Akbar M
    Neurotox Res; 2019 Apr; 35(3):739-774. PubMed ID: 30632085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Huntingtin protein interactions altered by polyglutamine expansion as determined by quantitative proteomic analysis.
    Ratovitski T; Chighladze E; Arbez N; Boronina T; Herbrich S; Cole RN; Ross CA
    Cell Cycle; 2012 May; 11(10):2006-21. PubMed ID: 22580459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metallothioneins and copper metabolism are candidate therapeutic targets in Huntington's disease.
    Hands SL; Mason R; Sajjad MU; Giorgini F; Wyttenbach A
    Biochem Soc Trans; 2010 Apr; 38(2):552-8. PubMed ID: 20298220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of huntingtin fibrillogenesis by specific antibodies and small molecules: implications for Huntington's disease therapy.
    Heiser V; Scherzinger E; Boeddrich A; Nordhoff E; Lurz R; Schugardt N; Lehrach H; Wanker EE
    Proc Natl Acad Sci U S A; 2000 Jun; 97(12):6739-44. PubMed ID: 10829068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic Analysis of Huntington's Disease.
    Kumar S; Singh P; Sharma S; Ali J; Baboota S; Pottoo FH
    Curr Protein Pept Sci; 2020; 21(12):1218-1222. PubMed ID: 33023443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mouse models of Huntington's disease and methodological considerations for therapeutic trials.
    Ferrante RJ
    Biochim Biophys Acta; 2009 Jun; 1792(6):506-20. PubMed ID: 19362590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Update on Huntington's disease.
    Berman SB; Greenamyre JT
    Curr Neurol Neurosci Rep; 2006 Jul; 6(4):281-6. PubMed ID: 16822347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global Proteome and Ubiquitinome Changes in the Soluble and Insoluble Fractions of Q175 Huntington Mice Brains.
    Sap KA; Guler AT; Bezstarosti K; Bury AE; Juenemann K; Demmers JA; Reits EA
    Mol Cell Proteomics; 2019 Sep; 18(9):1705-1720. PubMed ID: 31138642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sirtuins as Modifiers of Huntington's Disease (HD) Pathology.
    Neo SH; Tang BL
    Prog Mol Biol Transl Sci; 2018; 154():105-145. PubMed ID: 29413175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.