BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 2529128)

  • 1. Functional changes in potassium channels in aortas from rats with streptozotocin-induced diabetes.
    Kamata K; Miyata N; Kasuya Y
    Eur J Pharmacol; 1989 Jul; 166(2):319-23. PubMed ID: 2529128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in responsiveness of the aorta to vasorelaxant agents in genetically diabetic rats: a study in WBN/Kob rats.
    Miyata N; Yamaura H; Tsuchida K; Otomo S; Kamata K; Kasuya Y
    Life Sci; 1992; 50(18):1363-9. PubMed ID: 1313940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potassium channel opening properties of a novel compound, NIP-121, cromakalim and nicorandil in rat aorta and portal vein.
    Masuda Y; Arakawa C; Yamashita T; Miyajima M; Shigenobu K; Kasuya Y; Tanaka S
    Eur J Pharmacol; 1991 Apr; 195(3):323-31. PubMed ID: 1831135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of relaxation and repolarization mechanisms of nicorandil in rat mesenteric artery.
    Fujiwara T; Angus JA
    Br J Pharmacol; 1996 Dec; 119(8):1549-56. PubMed ID: 8982500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytoplasmic calcium and the relaxation of canine coronary arterial smooth muscle produced by cromakalim, pinacidil and nicorandil.
    Yanagisawa T; Teshigawara T; Taira N
    Br J Pharmacol; 1990 Sep; 101(1):157-65. PubMed ID: 2149290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of inhibitory effects of CD-349 and K(+)-channel activators on noradrenaline-induced contraction and changes in levels of cyclic GMP in rat aorta.
    Miyata N; Tsuchida K; Kaneko K; Tanaka M; Otomo S
    Gen Pharmacol; 1990; 21(5):665-9. PubMed ID: 2177435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potassium channel openers relax A23187-induced nifedipine-resistant contraction of rat aorta.
    Yamashita T; Masuda Y; Tanaka S
    J Cardiovasc Pharmacol; 1994 Dec; 24(6):914-20. PubMed ID: 7898074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The inhibitory mechanisms of nicorandil in isolated rat urinary bladder and femoral artery.
    Zhou Q; Satake N; Shibata S
    Eur J Pharmacol; 1995 Jan; 273(1-2):153-9. PubMed ID: 7737309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of BRL 34915 and nicorandil on electrical and mechanical activity and on 86Rb efflux in rat blood vessels.
    Weir SW; Weston AH
    Br J Pharmacol; 1986 May; 88(1):121-8. PubMed ID: 2423172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glibenclamide is a competitive antagonist of cromakalim, pinacidil and RP 49356 in guinea-pig pulmonary artery.
    Eltze M
    Eur J Pharmacol; 1989 Jun; 165(2-3):231-9. PubMed ID: 2528466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of pinacidil, cromakalim, and nicorandil on potassium currents of rat basilar artery smooth muscle.
    Zhang H; Stockbridge N; Weir B
    Adv Exp Med Biol; 1991; 304():531-41. PubMed ID: 1839488
    [No Abstract]   [Full Text] [Related]  

  • 12. Comparison of the vascular relaxant effects of ATP-dependent K+ channel openers on aorta and pulmonary artery isolated from spontaneously hypertensive and Wistar-Kyoto rats.
    Kwan YW; To KW; Lau WM; Tsang SH
    Eur J Pharmacol; 1999 Jan; 365(2-3):241-51. PubMed ID: 9988108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative effects of K+ channel blockade on the vasorelaxant activity of cromakalim, pinacidil and nicorandil.
    Wilson C; Coldwell MC; Howlett DR; Cooper SM; Hamilton TC
    Eur J Pharmacol; 1988 Aug; 152(3):331-9. PubMed ID: 2851450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of nicorandil on cytosolic calcium concentrations and on tension development in the rabbit femoral artery.
    Abe S; Nishimura J; Nakamura M; Kanaide H
    J Pharmacol Exp Ther; 1994 Feb; 268(2):762-71. PubMed ID: 8113988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vasorelaxant mechanism of KRN2391 and nicorandil in porcine coronary arteries of different sizes.
    Miwa A; Kaneta S; Motoki K; Jinno Y; Kasai H; Okada Y; Fukushima H; Ogawa N
    Br J Pharmacol; 1993 Jul; 109(3):632-6. PubMed ID: 8358563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacological interaction experiments differentiate between glibenclamide-sensitive K+ channels and cyclic GMP as components of vasodilation by nicorandil.
    Holzmann S; Kukovetz WR; Braida C; Pöch G
    Eur J Pharmacol; 1992 Apr; 215(1):1-7. PubMed ID: 1325362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The negative inotropic effect of nicorandil is independent of cyclic GMP changes: a comparison with pinacidil and cromakalim in canine atrial muscle.
    Yanagisawa T; Hashimoto H; Taira N
    Br J Pharmacol; 1988 Oct; 95(2):393-8. PubMed ID: 2852521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of putative activators of K+ channels in mouse pancreatic beta-cells.
    Garrino MG; Plant TD; Henquin JC
    Br J Pharmacol; 1989 Nov; 98(3):957-65. PubMed ID: 2531623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of relaxants working through different transduction mechanisms on the tonic contraction produced in rat aorta by 4 beta-phorbol dibutyrate.
    Obianime AW; Dale MM
    Br J Pharmacol; 1989 Jul; 97(3):647-56. PubMed ID: 2758236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of cromakalim (BRL 34915) on mechanical responses of rat vas deferens to noradrenaline and naphazoline.
    Grana E; Barbieri A; Zonta F
    Eur J Pharmacol; 1991 Jan; 192(1):79-84. PubMed ID: 2040365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.