These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 25291629)

  • 1. Nanoimprint lithography of Al nanovoids for deep-UV SERS.
    Ding T; Sigle DO; Herrmann LO; Wolverson D; Baumberg JJ
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17358-63. PubMed ID: 25291629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reproducible Deep-UV SERRS on Aluminum Nanovoids.
    Sigle DO; Perkins E; Baumberg JJ; Mahajan S
    J Phys Chem Lett; 2013 May; 4(9):1449-52. PubMed ID: 26282297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UV-Nanoimprint Lithography for Predefined SERS Nanopatterns Which Are Reproducible at Low Cost and High Throughput.
    Milenko K; Dullo FT; Thrane PCV; Skokic Z; Dirdal CA
    Nanomaterials (Basel); 2023 May; 13(10):. PubMed ID: 37242015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid metal-dielectric gratings (HMDGs) as an alternative UV-SERS substrate.
    Zheng J; Liu X; Tian M; Su Y; Li L
    Phys Chem Chem Phys; 2023 Jun; 25(22):15257-15262. PubMed ID: 37221935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soft UV nanoimprint lithography-designed highly sensitive substrates for SERS detection.
    Cottat M; Lidgi-Guigui N; Tijunelyte I; Barbillon G; Hamouda F; Gogol P; Aassime A; Lourtioz JM; Bartenlian B; de la Chapelle ML
    Nanoscale Res Lett; 2014 Dec; 9(1):2361. PubMed ID: 26089008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beyond the Visible: A Review of Ultraviolet Surface-Enhanced Raman Scattering Substrate Compositions, Morphologies, and Performance.
    Giordano AN; Rao R
    Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhodium nanocubes and nanotripods for highly sensitive ultraviolet surface-enhanced Raman spectroscopy.
    Das R; Soni RK
    Analyst; 2018 May; 143(10):2310-2322. PubMed ID: 29687108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate.
    Zhang C; Yi P; Peng L; Lai X; Chen J; Huang M; Ni J
    Sci Rep; 2017 Jan; 7():39814. PubMed ID: 28051175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface- and tip-enhanced resonant Raman scattering from CdSe nanocrystals.
    Sheremet E; Milekhin AG; Rodriguez RD; Weiss T; Nesterov M; Rodyakina EE; Gordan OD; Sveshnikova LL; Duda TA; Gridchin VA; Dzhagan VM; Hietschold M; Zahn DR
    Phys Chem Chem Phys; 2015 Sep; 17(33):21198-203. PubMed ID: 25566587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser printing of resonant plasmonic nanovoids.
    Kuchmizhak A; Vitrik O; Kulchin Y; Storozhenko D; Mayor A; Mirochnik A; Makarov S; Milichko V; Kudryashov S; Zhakhovsky V; Inogamov N
    Nanoscale; 2016 Jun; 8(24):12352-61. PubMed ID: 27273005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel SERS Substrate Platform: Spatially Stacking Plasmonic Hotspots Films.
    Tang L; Liu Y; Liu G; Chen Q; Li Y; Shi L; Liu Z; Liu X
    Nanoscale Res Lett; 2019 Mar; 14(1):94. PubMed ID: 30868395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free and direct protein detection on 3D plasmonic nanovoid structures using surface-enhanced Raman scattering.
    Kahraman M; Wachsmann-Hogiu S
    Anal Chim Acta; 2015 Jan; 856():74-81. PubMed ID: 25542360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays.
    Jha SK; Ahmed Z; Agio M; Ekinci Y; Löffler JF
    J Am Chem Soc; 2012 Feb; 134(4):1966-9. PubMed ID: 22239484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inherently reproducible fabrication of plasmonic nanoparticle arrays for SERS by combining nanoimprint and copolymer lithography.
    Krishnamoorthy S; Krishnan S; Thoniyot P; Low HY
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1033-40. PubMed ID: 21375254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy.
    Wu W; Hu M; Ou FS; Li Z; Williams RS
    Nanotechnology; 2010 Jun; 21(25):255502. PubMed ID: 20508315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hollow plasmonic antennas for broadband SERS spectroscopy.
    Messina GC; Malerba M; Zilio P; Miele E; Dipalo M; Ferrara L; De Angelis F
    Beilstein J Nanotechnol; 2015; 6():492-8. PubMed ID: 25821690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partial Leidenfrost Evaporation-Assisted Ultrasensitive Surface-Enhanced Raman Spectroscopy in a Janus Water Droplet on Hierarchical Plasmonic Micro-/Nanostructures.
    Song J; Cheng W; Nie M; He X; Nam W; Cheng J; Zhou W
    ACS Nano; 2020 Aug; 14(8):9521-9531. PubMed ID: 32589403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-Enhanced Raman Scattering and Fluorescence on Gold Nanogratings.
    Chang YC; Huang BH; Lin TH
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32316451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring SERS from complex patterns fabricated by multi-exposure laser interference lithography.
    Kim SJ; Hwang JS; Park JE; Yang M; Kim S
    Nanotechnology; 2021 May; 32(31):. PubMed ID: 33892481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering.
    Zheng P; Cushing SK; Suri S; Wu N
    Phys Chem Chem Phys; 2015 Sep; 17(33):21211-9. PubMed ID: 25586930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.