These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 25291963)
1. The effects of tetracycline-loaded silk fibroin membrane on proliferation and osteogenic potential of mesenchymal stem cells. Jin SH; Kweon H; Park JB; Kim CH J Surg Res; 2014 Dec; 192(2):e1-9. PubMed ID: 25291963 [TBL] [Abstract][Full Text] [Related]
2. Composite chitosan/silk fibroin nanofibers for modulation of osteogenic differentiation and proliferation of human mesenchymal stem cells. Lai GJ; Shalumon KT; Chen SH; Chen JP Carbohydr Polym; 2014 Oct; 111():288-97. PubMed ID: 25037354 [TBL] [Abstract][Full Text] [Related]
3. Minocycline Loaded Hybrid Composites Nanoparticles for Mesenchymal Stem Cells Differentiation into Osteogenesis. Tham AY; Gandhimathi C; Praveena J; Venugopal JR; Ramakrishna S; Kumar SD Int J Mol Sci; 2016 Jul; 17(8):. PubMed ID: 27483240 [TBL] [Abstract][Full Text] [Related]
4. Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells. Gandhimathi C; Venugopal JR; Tham AY; Ramakrishna S; Kumar SD Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():776-785. PubMed ID: 25687008 [TBL] [Abstract][Full Text] [Related]
5. Modulation of Bone-Specific Tissue Regeneration by Incorporating Bone Morphogenetic Protein and Controlling the Shell Thickness of Silk Fibroin/Chitosan/Nanohydroxyapatite Core-Shell Nanofibrous Membranes. Shalumon KT; Lai GJ; Chen CH; Chen JP ACS Appl Mater Interfaces; 2015 Sep; 7(38):21170-81. PubMed ID: 26355766 [TBL] [Abstract][Full Text] [Related]
6. The effects of pore architecture in silk fibroin scaffolds on the growth and differentiation of mesenchymal stem cells expressing BMP7. Zhang Y; Fan W; Ma Z; Wu C; Fang W; Liu G; Xiao Y Acta Biomater; 2010 Aug; 6(8):3021-8. PubMed ID: 20188872 [TBL] [Abstract][Full Text] [Related]
7. Directing osteogenesis of stem cells with hydroxyapatite precipitated electrospun eri-tasar silk fibroin nanofibrous scaffold. Panda N; Bissoyi A; Pramanik K; Biswas A J Biomater Sci Polym Ed; 2014; 25(13):1440-57. PubMed ID: 25090157 [TBL] [Abstract][Full Text] [Related]
8. Osteogenesis by human mesenchymal stem cells cultured on silk biomaterials: comparison of adenovirus mediated gene transfer and protein delivery of BMP-2. Meinel L; Hofmann S; Betz O; Fajardo R; Merkle HP; Langer R; Evans CH; Vunjak-Novakovic G; Kaplan DL Biomaterials; 2006 Oct; 27(28):4993-5002. PubMed ID: 16765437 [TBL] [Abstract][Full Text] [Related]
9. Non-mulberry silk gland fibroin protein 3-D scaffold for enhanced differentiation of human mesenchymal stem cells into osteocytes. Mandal BB; Kundu SC Acta Biomater; 2009 Sep; 5(7):2579-90. PubMed ID: 19345621 [TBL] [Abstract][Full Text] [Related]
10. Purification of human adipose-derived stem cells from fat tissues using PLGA/silk screen hybrid membranes. Chen DC; Chen LY; Ling QD; Wu MH; Wang CT; Suresh Kumar S; Chang Y; Munusamy MA; Alarfajj AA; Wang HC; Hsu ST; Higuchi A Biomaterials; 2014 May; 35(14):4278-87. PubMed ID: 24565521 [TBL] [Abstract][Full Text] [Related]
11. Osteogenic differentiation of bone marrow mesenchymal stem cells on the collagen/silk fibroin bi-template-induced biomimetic bone substitutes. Wang J; Yang Q; Mao C; Zhang S J Biomed Mater Res A; 2012 Nov; 100(11):2929-38. PubMed ID: 22700033 [TBL] [Abstract][Full Text] [Related]
12. Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells. Kim HJ; Kim UJ; Vunjak-Novakovic G; Min BH; Kaplan DL Biomaterials; 2005 Jul; 26(21):4442-52. PubMed ID: 15701373 [TBL] [Abstract][Full Text] [Related]
13. Osteogenic and adipogenic differentiation of rat bone marrow cells on non-mulberry and mulberry silk gland fibroin 3D scaffolds. Mandal BB; Kundu SC Biomaterials; 2009 Oct; 30(28):5019-30. PubMed ID: 19577292 [TBL] [Abstract][Full Text] [Related]
14. [Effects of alginate/collagen scaffold on cell proliferation and differentiation of human adipose-derived mesenchymal stem cells]. Cheng W; Han XP; Mou SL; Yang F; Liu LP Zhonghua Kou Qiang Yi Xue Za Zhi; 2017 Apr; 52(4):259-264. PubMed ID: 28412794 [No Abstract] [Full Text] [Related]
15. Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. Karageorgiou V; Meinel L; Hofmann S; Malhotra A; Volloch V; Kaplan D J Biomed Mater Res A; 2004 Dec; 71(3):528-37. PubMed ID: 15478212 [TBL] [Abstract][Full Text] [Related]
16. Silk proteins stimulate osteoblast differentiation by suppressing the Notch signaling pathway in mesenchymal stem cells. Jung SR; Song NJ; Yang DK; Cho YJ; Kim BJ; Hong JW; Yun UJ; Jo DG; Lee YM; Choi SY; Park KW Nutr Res; 2013 Feb; 33(2):162-70. PubMed ID: 23399667 [TBL] [Abstract][Full Text] [Related]
17. Electrospun poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/silk fibroin film is a promising scaffold for bone tissue engineering. Ang SL; Shaharuddin B; Chuah JA; Sudesh K Int J Biol Macromol; 2020 Feb; 145():173-188. PubMed ID: 31866541 [TBL] [Abstract][Full Text] [Related]
18. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends. Bhardwaj N; Kundu SC Biomaterials; 2012 Apr; 33(10):2848-57. PubMed ID: 22261099 [TBL] [Abstract][Full Text] [Related]
19. Flow velocity-driven differentiation of human mesenchymal stromal cells in silk fibroin scaffolds: A combined experimental and computational approach. Vetsch JR; Betts DC; Müller R; Hofmann S PLoS One; 2017; 12(7):e0180781. PubMed ID: 28686698 [TBL] [Abstract][Full Text] [Related]
20. The osteogenic properties of CaP/silk composite scaffolds. Zhang Y; Wu C; Friis T; Xiao Y Biomaterials; 2010 Apr; 31(10):2848-56. PubMed ID: 20071025 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]