These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25292111)

  • 41. Application of flow cytometry for the assessment of preservation and recovery efficiency of bioaerosol samplers spiked with Pantoea agglomerans.
    Rule AM; Kesavan J; Schwab KJ; Buckley TJ
    Environ Sci Technol; 2007 Apr; 41(7):2467-72. PubMed ID: 17438801
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chamber evaluation of a personal, bioaerosol cyclone sampler.
    Macher J; Chen B; Rao C
    J Occup Environ Hyg; 2008 Nov; 5(11):702-12. PubMed ID: 18720289
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation of Air Samplers for Recovery of Artificially Generated Aerosols of Pure Cultures in a Controlled Environment.
    Kang YJ; Frank JF
    J Food Prot; 1989 Aug; 52(8):560-563. PubMed ID: 31003329
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Performance of personal inhalable aerosol samplers in very slowly moving air when facing the aerosol source.
    Witschger O; Grinshpun SA; Fauvel S; Basso G
    Ann Occup Hyg; 2004 Jun; 48(4):351-68. PubMed ID: 15191944
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluation of Air Samplers for Recovery of Biological Aerosols in Dairy Processing Plants.
    Kang YJ; Frank JF
    J Food Prot; 1989 Sep; 52(9):655-659. PubMed ID: 31003282
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of an efficient viral aerosol collector for higher sampling flow rate.
    Lin XT; Hsu NY; Wang JR; Chen NT; Su HJ; Lin MY
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3884-3893. PubMed ID: 29177778
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of air samplers and filter materials for collection and recovery of airborne norovirus.
    Uhrbrand K; Koponen IK; Schultz AC; Madsen AM
    J Appl Microbiol; 2018 Apr; 124(4):990-1000. PubMed ID: 28921812
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Collection of Viable Aerosolized Influenza Virus and Other Respiratory Viruses in a Student Health Care Center through Water-Based Condensation Growth.
    Pan M; Bonny TS; Loeb J; Jiang X; Lednicky JA; Eiguren-Fernandez A; Hering S; Fan ZH; Wu CY
    mSphere; 2017; 2(5):. PubMed ID: 29034325
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Laboratory study of selected personal inhalable aerosol samplers.
    Görner P; Simon X; Wrobel R; Kauffer E; Witschger O
    Ann Occup Hyg; 2010 Mar; 54(2):165-87. PubMed ID: 20147627
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of four sampling devices for Burkholderia pseudomallei laboratory aerosol studies.
    Schuit M; Gardner S; Taylor J; Dabisch P
    PLoS Negl Trop Dis; 2021 Feb; 15(2):e0009001. PubMed ID: 33524051
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of a label-free and innovative approach based on surface plasmon resonance biosensor for on-site detection of infectious bursal disease virus (IBDV).
    Hu J; Li W; Wang T; Lin Z; Jiang M; Hu F
    Biosens Bioelectron; 2012 Jan; 31(1):475-9. PubMed ID: 22138467
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of portable air samplers for monitoring airborne culturable bacteria.
    Mehta SK; Bell-Robinson DM; Groves TO; Stetzenbach LD; Pierson DL
    AIHAJ; 2000; 61(6):850-4. PubMed ID: 11192219
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative performance of impactor air samplers for quantification of fungal contamination.
    Nesa D; Lortholary J; Bouakline A; Bordes M; Chandenier J; Derouin F; Gangneux JP
    J Hosp Infect; 2001 Feb; 47(2):149-55. PubMed ID: 11170780
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Field testing of a personal size-selective bioaerosol sampler.
    Kenny LC; Bowry A; Crook B; Stancliffe JD
    Ann Occup Hyg; 1999 Aug; 43(6):393-404. PubMed ID: 10518465
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Antibody titers to infectious bursal disease virus in broiler chicks after vaccination at one day of age with infectious bursal disease virus and Marek's disease virus.
    Knoblich HV; Sommer SE; Jackwood DJ
    Avian Dis; 2000; 44(4):874-84. PubMed ID: 11195642
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Detection and characterization of infectious bursal disease viruses in broilers at processing.
    Jackwood DJ; Sommer-Wagner SE
    Prev Vet Med; 2010 Oct; 97(1):45-50. PubMed ID: 20801535
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Detection of infectious bursal disease viruses in commercially reared chickens using the reverse transcriptase/polymerase chain reaction-restriction endonuclease assay.
    Jackwood DJ; Nielsen CK
    Avian Dis; 1997; 41(1):137-43. PubMed ID: 9087330
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Detection and quantification of classical swine fever virus in air samples originating from infected pigs and experimentally produced aerosols.
    Weesendorp E; Landman WJ; Stegeman A; Loeffen WL
    Vet Microbiol; 2008 Feb; 127(1-2):50-62. PubMed ID: 17869455
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Generation, transmission and infectiosity of chicken MDV aerosols under experimental conditions.
    Hao H; Li C; Qiu Y; Wang F; Ai W; Gao J; Wei L; Li X; Sun L; Wu J; Qin G; Li R; Liu J; Lv J; Huang R; Wang H; Chai T
    Vet Microbiol; 2014 Aug; 172(3-4):400-6. PubMed ID: 24999232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.